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ABSTRACT

Recent advances in Generative Artificial Intelligence have
fueled numerous applications, particularly those involving
Generative Adversarial Networks (GANs), which are essen-
tial for synthesizing realistic photos and videos. However,
efficiently training GAN’s remains a critical challenge due
to their computationally intensive and numerically unstable
nature. Existing methods often require days or even weeks
for training, posing significant resource and time constraints.
In this work, we introduce ParaGAN, a scalable distributed
GAN training framework that leverages asynchronous train-
ing and an asymmetric optimization policy to accelerate
GAN training. ParaGAN employs a congestion-aware data
pipeline and hardware-aware layout transformation to en-
hance accelerator utilization, resulting in over 30% improve-
ments in throughput. With ParaGAN, we reduce the training
time of BigGAN from 15 days to 14 hours while achieving 91%
scaling efficiency. Additionally, ParaGAN enables unprece-
dented high-resolution image generation using BigGAN.
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Table 1: A summary of reported training time and
model size for GANs trained on ImageNet dataset.

GANs Hardware Time # Params.
SNGAN [27] 8 V100 GPUs  3d 13.6h 81.44M
ProgressiveGAN [16] 8 V100 GPUs 4d 43.2M
ContraGAN [15] 8 V100 GPUs  5d 3.5h 160.78M
SAGAN [38] 8 V100 GPUs 10d 18.7h  81.47M
BigGAN [3] 8 V100 GPUs 15d 158.42M

1 INTRODUCTION

The last decade has witnessed the success of Generative
Adversarial Networks [8], which has a wide range of appli-
cations including image super-resolution [19], image trans-
lation [12, 40], photo inpainting [7, 37]. However, training
GAN at scale remains challenging because of the computa-
tional demands and optimization difficulties.

Unlike other conventional neural networks where op-
timization is straightforward by taking gradient descents,
there are two sub-networks to optimize in GAN, namely gen-
erator and discriminator. The generator samples from the
noise and produces a fake sample as close to the real sample
as possible, and the discriminator evaluates the generated
sample. The generator aims to fool the discriminator, and
the discriminator will try to identify the fake images from
the real ones. Since the two components are optimized for
two contradicting goals, it has been observed that GANs
are difficult to converge. Therefore, to speed up the GAN
training at large scale, we need a framework optimized on
both system and numerical perspectives.

Due to the difficulty of optimizing GAN, many state-of-
the-art GAN models take days or even weeks to train. For
instance, BigGAN [3] took 15 days on 8x V100 GPUs to
converge. Table 1 summarizes the reported training time
of some of the state-of-the-art GAN models. This makes
it difficult to quickly reproduce, evaluate, and iterate GAN
experiments. Also, current GAN frameworks usually only
support training on a small number of nodes [5, 15, 20].

We argue that training speed is an important yet often
ignored factor in the current GAN training landscape, and we
propose to accelerate it with distributed training. However,
distributed GAN training has several challenges. First of all,
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Throughput of BigGAN trained with ParaGAN
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Figure 1: ParaGAN scales to 1024 TPU accelerators at
91% scaling efficiency.

most data centers have storage nodes and compute nodes
separated for elasticity, but network congestion can happen
from time to time, which prolongs the latency between nodes
and affects training throughput. Secondly, there are usually
different types of accelerators in the data center, but each of
them has its architectural design and preferred data layout. If
ignored, it could lead to under-utilization of accelerators. Last
but not least, training GAN at scale may cause a convergence
problem, in which the GAN loss does not converge to a stable
equilibrium. Therefore, this framework has to consider both
system and numerical perspectives.

In this work, we present ParaGAN, the first distributed
training framework that supports large-scale distributed
training for high-resolution GAN. We identify the perfor-
mance bottlenecks when training at scale and optimize them
for efficiency. ParaGAN has a simple interface for building
new GAN architecture, and it supports CPU, GPU, and TPU.

The main contributions of ParaGAN include:

e We design and implement the first scalable distributed
training framework for GAN with optimizations on
both system and numerical perspectives. With Para-
GAN, the training time of BigGAN can be shortened
from 15 days to 14 hours with 1024 TPU accelerators
at 91% scaling efficiency, as shown in Fig. 1. ParaGAN
also enables direct photo-realistic image generation
at unprecedented 1024 X 1024 resolution, which is 4X
higher than the original BigGAN model.

e From the system optimization perspective, we use
congestion-aware data pipeline and hardware-aware
layout transformation to improve the accelerator uti-
lization, and low-precision training to alleviate the
memory stress. They contribute to 30-40% throughput
improvements over baseline.
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e From the numerical optimization perspective, we show
that the generator and discriminator can be optimized
independently, and present an asynchronous update
scheme together with an asymmetric optimization pol-
icy.

The paper is organized in the following manner: we dis-
cuss the motivation and requirement for large-scale GAN
training in Section 2; in Section 3, we will explain our design
for ParaGAN, and how those architectural considerations can
address the requirements; in Section 4 and Section 5, we will
cover the system-level and numerical-level optimizations for
scalable training in ParaGAN respectively; in Section 6, we
present our scalability evaluation of ParaGAN and study the
effect of different optimization techniques; a brief review of
related work on GAN and large-scale distributed training is
presented in Section 7; we conclude this study of GAN in
Section 8.

2 MOTIVATION AND REQUIREMENTS

We begin by considering the basic components of GAN to
discover the key requirements for GAN training. As shown
in Fig. 2, a GAN consists of a generator and a discriminator.
The generator generates fake data samples, while the dis-
criminator distinguishes between the generated samples and
real samples as accurately as possible. The learning problem
of GANs is a minimax optimization problem. The goal of
the optimization is to reach an equilibrium for a two-player
problem:

N 18X By g, (c) [10g D) 4Bz z) [log (1= D(G(2)]

where z € R% is a latent variable drawn from distribution
p(2). The discriminator seeks to maximize the sum of the log
probability of correctly predicting the real and fake samples,
while the generator tries to minimize it instead. The conver-
gence of GAN is defined in the form of Nash Equilibrium:
one network does not change its loss regardless of what the
other network does.

Since the two networks have contradicting goals, the train-
ing process of GAN is a zero-sum game and can be very
unstable. Recent works show that: i) GAN may converge to
points that are not local minimax using gradient descent, in
particular for a non-convex game which is common [6, 13],
and ii) gradient descent on GAN exhibits strong rotation
around fixed points, which requires using very small learning
rates [1, 25]. Also, GANs training is sensitive to the hyperpa-
rameters and initialization [23]. Therefore, it is observed that
GAN:Ss are difficult to optimize, and this is also the reason
why it takes a long time to train them.

There are some existing GAN libraries [5, 15, 20, 23] for
training state-of-the-art GANs. They provide standardized
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Figure 2: Typical GAN architecture.

building blocks like network backbone and evaluation met-
rics, making it easy to build new models. However, they
focus less on the system performance, and training GAN can
still take days if not weeks. If the training process can be
massively paralleled, the iteration cycles can be greatly short-
ened. Motivated by the challenges with the status quo, we
outline the following requirements for a desirable distributed
GAN training framework:

Performance and Scalability. Performance is of critical im-
portance to GAN training. The experiments from [23] in total
took 60K GPU hours to train, making it hard to reproduce
and improve over. Completing such a workload is almost in-
feasible without using distributed training. Also, since most
GAN models are compute-intensive and can be fitted into
the memory of one worker, data parallelism can be used as
the distributed training strategy, by placing identical copies
of the model on each accelerator worker. The framework
should be scalable as the number of accelerators scales.

Numerical Stability. The convergence of GAN can be very
volatile. The framework should have means to stabilize the
training process. Also, the framework should support large
batch training as the number of accelerator scales.

In ParaGAN, our approach is to co-design the solution on
the system and optimization levels. At the system level, we
pinpoint performance bottlenecks, primarily arising from
network congestion and sub-optimal accelerator utilization.
To alleviate these issues, we introduce a congestion-aware
data pipeline and implement a hardware-aware layout trans-
formation. On the optimization front, we argue that the train-
ing process of the discriminator and generator can be treated
independently, and we find that decoupling the training of
the generator and discriminator offers advantages. To capi-
talize on this insight, ParaGAN employs an asynchronous
update scheme along with an asymmetric optimization pol-

icy.
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Figure 3: Overview of ParaGAN.

3 DESIGN AND ARCHITECTURE

In this section, we will give an overview and discuss the de-
sign decisions of ParaGAN. We recognize that the scalability
is usually limited by the latency between nodes. Furthermore,
when scaling up the GAN training, the numerical instability
problem happens more often. We therefore divide the discus-
sions into two folds and present our co-designed approach
for system throughput and training stability as it scales.

3.1 Programming Model

The architecture of ParaGAN is presented in Fig. 3. ParaGAN
is implemented on top of TensorFlow, but it can be ported to
support other DL frameworks. ParaGAN provides high-level
APIs for GAN which include scaling manager, evaluation
metrics, and common network backbones. Users of ParaGAN
can import from ParaGAN or define their components. Para-
GAN then performs layout transformation on tensors and
invokes TensorFlow, which converts the model definition
to a computational graph. An optional XLA [31] pass can
be performed followed by that. After that, the training loop
starts on the compute nodes that host accelerators like GPUs
and TPUs.
We introduce three concepts in ParaGAN:

3.1.1 Scaling Manager. The scaling manager is in charge
of hyper-parameters that need to be tuned when scaling,
including learning rate, optimizer, and local batch size. Users
can use the best hyper-parameters from a single worker as
a starting point, and ParaGAN will scale them based on the
number of workers and learning rate schedules. Users can
also define their scaling manager.
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Listing 1: Parallel GAN Training and Evaluation

import paragan as pg

class Generator:
def model_fn(x, y):
# generator model
return output

class Discriminator:
def model_fn(x, y):
# discriminator model
return output, out_logits

scaling_mgr = pg.ScalingManager (config=cfg,
batch_size=2048, num_workers=128)

g = Generator ()
d = Discriminator ()
model = pg.Estimator(g,d)

# training
for step in cfg.max_train_steps:
scaling_mgr.train(gan)

# evaluation
scaling_mgr.eval(metric="fid")

3.1.2  Network Backbones. Users usually start by building
upon existing GAN architectures. We also provide some
popular GAN architectures as backbone, including but not
limited to:

e BigGAN [3];

e Deep Convolutional GAN (DCGAN) [30];

e Spectral Norm GAN (SNGAN) [27]

3.1.3  Evaluation Metrics. Evaluation metrics can be imple-
mented differently across papers, and this can cause incon-
sistency. We provide commonly used evaluation metrics in-
cluding Frechet Inception Distance (FID) and Inception Score
IS).

3.2 Computation Model

Training on the cloud usually involves host machines (mostly
CPU nodes), compute nodes and storage nodes. As depicted
in Fig. 3, the host fetches input data from the storage node,
builds the model, chooses the tensor layout for the target
accelerator, and feeds to the compute nodes. After that, the
accelerators execute forward and backward passes and then
synchronize gradients among other accelerators. At the same
time, the host prefetches and transforms the data from the
storage node. Model checkpoints are saved to the storage
node which can be an object store or mounted file system.
A host machine can be a standalone node, while most of
the time it co-locates with the compute nodes in the same
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chassis, and is connected to the accelerators via high-speed
PCI-e bus or NVLink. Meanwhile, the host-to-host and host-
to-storage connections usually go through Ethernet.

3.3 System Optimizations

To satisfy the scalability requirement, we design ParaGAN
with optimizations on data pipeline, computation, and mem-
ory.

We optimize the data pipeline performance by using a
congestion-aware data pipeline. For data centers, the com-
pute and storage nodes are usually physically distributed
and interconnected via Ethernet instead of high-speed In-
finiBand. The network traffic between them may not always
be stable since the infrastructure is shared with other ten-
ants. This issue is further pronounced when the number of
participating data parallel workers scales up because data
parallelism is a synchronous training method that is sen-
sitive to the latency of the slowest participant. Therefore,
ParaGAN continuously monitors the data pipeline latency
and implements a congestion-aware data pipeline tuner.

To achieve a higher accelerator utilization, ParaGAN per-
forms hardware-aware layout transformation. A data center
usually has multiple types of accelerators, and different accel-
erators have different micro-architectures and instructions,
thereby having different preferred data layouts. For example,
Nvidia A100 GPUs prefer half-precision data in multiples of
64, and single-precision data in multiples of 32, while previ-
ous generations prefer multiples of 8. For TPU, the preferred
data layout should have a multiple of 128 on the lane di-
mension and 8 on the sublane dimension. If misconfigured,
this will result in unnecessary padding which reduces accel-
erator utilization and increases memory consumption. We
come up with the hardware-aware layout transformation
to transform the data into an accelerator-friendly format to
maximize accelerator utilization.

Memory usage can be reduced by mixed-precision training
with Brain Float 16 (bf16) format. Theoretically, using purely
bf16 can save half of the memory for activation. However,
we observe through experiments that bf16 is not suitable for
the layers that are sensitive to overflow/underflow. To be
precise, we found that the generator and discriminator’s last
layer are more sensitive to precision. As such, we apply full
precision (fp32) on these layers.

3.4 Numerical Optimizations

Another key contribution of ParaGAN is using asymmetric
training to stabilize GAN. As the number of workers scales,
a larger batch size can accelerate training. However, we ob-
serve that the performance of large batch training for GAN
is not as stable, and mode collapse happens frequently. Since
mode collapse is a type of GAN failure raised due to a highly
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Figure 4: Operator usage profile when training at scale.

coupled optimization process, to solve this problem, Para-
GAN comes with an asymmetric optimization policy and
asynchronous update scheme to decouple the process.

4 IMPLEMENTATION

To begin with, we profile BigGAN training on native Ten-
sorFlow [23] and present the result in Fig. 4. As we increase
the cluster size from 8 to 1024 TPU workers, idle time sig-
nificantly increases due to increased communication, but
convolution operation still makes up most of the time. It
indicates that training GAN is a compute-bound workload.
Therefore, we focus on improving the accelerator utilization
in ParaGAN.

To achieve this goal, we use congestion-aware data pipelin-
ing to reduce data pipeline latency, hardware-aware layout
transformation to increase accelerator utilization, and mixed-
precision training with bfloat16 for reduced memory.

4.1 Congestion-Aware Data Pipelining

The communication between the compute node and stor-
age node is much slower compared to the on-chip intercon-
nect. Different from TPU-TPU communication using high-
speed onboard interconnect or GPU-GPU communication
that could go through NVLink/PCI-e bus, communication be-
tween the accelerator node and cloud storage goes through
Ethernet, which is usually orders of magnitude slower than
the former.

Furthermore, during GAN training, a huge amount of data
will be transmitted via Ethernet. For instance, the ImageNet
2012 dataset is over 150 GB, and training BigGAN to con-
vergence takes around 240 epochs, resulting in a total of
32.74 TB of data being transmitted during the training phase.
When the number of workers increases, the amount of peak
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data transmitted increases at the same rate, since data paral-
lel training will send the same amount of data to each worker.
This further exacerbates the congestion problem.

Last but not least, network jittering can significantly af-
fect the training throughput. We observe that due to traffic
congestion within the data center, the latency between the
storage node and the accelerator node is not always stable
during peak hours, and it can result in low accelerator utiliza-
tion when the data pipeline cannot provide enough samples
to saturate the accelerator’s compute capability.

Although both TensorFlow and PyTorch implement data
pipelines to hide the data loading latency, when severe net-
work jittering happens, data loading and pre-processing take
much longer than usual, and it can be a bottleneck in large-
scale distributed training. As shown in Fig. 4, when the num-
ber of workers scales from 8 to 1024, it spends 13.6% more
time on idling, while data outfeeding time stays close. This
indicates that the accelerators are busy waiting for data in-
feed and gradient synchronization, which leads to reduced
utilization.

ParaGAN dynamically adjusts the number of processes
and size of the pre-processing buffer in response to the high-
variance network. It is implemented by maintaining a sliding
window for network latency during runtime. If the current la-
tency over the window exceeds the threshold, ParaGAN will
increase the number of threads and buffer for pre-fetching
and pre-processing; once the latency falls below the thresh-
old, it releases the resources for pre-processing. This may
come at the expense of increased shared memory usage, but
shared memory is usually abundant during model training.

Saving model checkpoints will also go through the host.
We use an asynchronous checkpoint writer to save model
checkpoints. The checkpoint will be streamed into the output
buffer instead of having a blocking call to pass it to the CPU
host.

4.2 Hardware-Aware Layout
Transformation

Zero-padding is frequently used in GAN when the input can-
not fit into the specified convolution dimension. For example,
a matrix of shape [100, 100] will need 6384 zeros padded to
run on a 128 X 128 matrix unit, which wastes 39% comput-
ing resources. As such, zero-padding hinders the accelerator
performance because memory is wasted by padding, leading
to lower accelerator and memory utilization rates.

Given that there exists an accelerator-dependent format
requirement, ParaGAN performs batching opportunistically
on the input data. In NCHW (batch size x number of channels
x height x width) format, ParaGAN tries to batch them such
that N/H/W are multiple of 128 before running on TPU so
that the accelerator memory can be efficiently utilized.
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On top of the batch dimensions, ParaGAN also seeks op-
portunities to batch intermediate results to be a multiple of
optimal layout dimensions. Such opportunities can be found
at reshape and matmul operators. For instance, if two input
matrices are to multiply the same weight, we can concate-
nate the two input matrices before the matrix multiplication
operation to save kernel launch overhead.

4.3 Mixed-Precision Training

ParaGAN supports mixed-precision training with Bfloat16 [?
] (bf16) format, which has a lower memory footprint com-
pared to double precision format, allowing users to use a
larger batch size or fit a bigger model into memory. How-
ever, porting bf16 while maintaining convergence is not
straightforward because bf16 trades floating-point precision
for range. As a result, hyperparameters with smaller val-
ues will also need to be adjusted to accommodate lower-
precision bits. For example, € in Adam optimizer is a small
value added to the denominator to avoid zero-division. With
low-precision bits, it is necessary to use a slightly larger €
value.

Throughout our evaluations, we observe that weights and
gradients are more sensitive to the bf16 format, while ac-
tivation can be represented using lower precision without
significantly affecting the coverage. Also, the shallow layers
are less sensitive compared to deeper layers. We provide bf16
as an option for users to explore.

5 NUMERICAL OPTIMIZATIONS

Synchronous large-batch training is a key technique for ac-
celerating neural network training. However, a major issue
with using large batches is that they can lead to numeri-
cal instability. In the context of GAN, numerical instability
can cause mode collapse or divergence, failing to generate
realistic samples with good variety.

A key reason for the numerical instability is that GAN
is a two-player game. As such, when the training proceeds,
the generator and discriminator can get tightly optimized
towards each other. Meanwhile, the generator and discrim-
inator are two networks with different learning dynamics.
We argue that the optimization process for GAN should treat
them differently.

Therefore, we propose an asynchronous update scheme to
decouple the generator and discriminator, and an asymmetric
optimization policy for optimizing the two differently.

5.1 Asynchronous Update Scheme

The optimization of GAN is traditionally a serial process
where the generator (G) and discriminator (D) update one af-
ter another. We question the necessity of an iterative process
and propose an asynchronous update scheme.
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tion t.

As shown in Fig. 5, the discriminator will not update its
parameter until the generator finishes backpropagation, and
vice versa. This is because of the data dependency: D reads
both the real sample and the generated sample as input to
calculate D loss, while G loss depends on the output and
weight of D. The data dependency issue requires both sub-
networks to only update one after another, which leads to
prolonged tensor lifespan due to blocking, and frequent con-
text switching when updating one or another.

Through our experiments, we find that the discriminator
is less sensitive to changes in the generator output. In other
words, the discriminator can still perform well even if its
input comes from the generator of the previous iteration.
This is because the primary goal of the discriminator is to
distinguish the generated sample from real samples, and it
is an easier task compared to that of the generator. This has
motivated us to update the discriminator asynchronously.

As shown in Fig. 5 (right), ParaGAN proposes an asyn-
chronous update scheme: instead of waiting on the other
component, the generator/discriminator can write their in-
termediate output to the buffer and proceed to update using
the current state of the network. For iteration t, discrimina-
tors D; receive a batch of real and generated samples from
the image buffer (img_buff). Similarly, the generators can
use the snapshot of the current discriminator state and D
predictions in pred_buff to calculate to gradient for back-
propagation, breaking the data dependency. It is therefore
possible to run both generator and discriminator in parallel
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Adam+Adabelief: discriminator trained using Adam
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on different nodes. Furthermore, the generator and discrimi-
nator ratio is now adjustable thanks to the decoupled design,
making it possible to apply different batch sizes for both
parties.

5.2 Asymmetric Optimization Policy

Generators and discriminators have different neural network
architectures and play opposed roles during training. Thus,
they are two entities with significantly distinct numerical
properties. It is observed that the discriminator is more sta-
ble than the generator. This indicates that the generator
and discriminator should be treated differently by using dif-
ferent sets of optimization techniques. However, previous
researchers treat them as the same in terms of numerical
optimization. We thus propose an Asymmetric Optimization
strategy for generator and discriminator in GAN training.

To accomplish this goal, ParaGAN firstly implements some
of the latest work on optimizers including Adabelief [41], rec-
tified Adam (RAdam) [21], Lookahead [39], and LARS [36].
We then empirically explored different optimizers for train-
ing GAN, and we found that there may not be a single clear
winner for all GAN architectures.

However, through experiments, we observe that it can
be beneficial to use different optimizers for the generator
and discriminator respectively. Fig. 6 shows that although
Adam reaches the lowest loss within 100K steps, it collapses
thereafter, which is not desirable as it indicates the training
has not reached the stable equilibrium. Adabelief is a more
adaptive variant of Adam optimizer, and it can adjust the size
of the weight update based on a comparison with previous
updates. Our experiments also validate that Adabelief out-
performs Adam. However, when using an asymmetric pair

SoCC ’24, November 20-22, 2024, Redmond, WA, USA

of optimizers (Adabelief for the generator and Adam for the
discriminator), the training process can converge to a better
equilibrium point (lower loss), and the training process is
more stable (flatter loss curve), especially towards the end
of the training.

We conjecture that the reason is that the two networks
have different learning dynamics, thus they require differ-
ent optimizers for gradient descent. The generator aims to
learn from the real-world distribution, thus it must provide a
good variety, and the optimizer for the generator should be
more agile. However, the task for the discriminator is rela-
tively easy: predicting the label (real or fake) for the supplied
images. Therefore, it is required to make consistently good
predictions and be robust to changes. As such, we believe
using the asymmetric optimizer policy can combine the best
of both worlds.

In ParaGAN, users can set the optimization policy for the
generator and discriminator respectively, which currently in-
cludes optimizers, learning rate schedulers, warmup epochs,
and gradient norms.

6 EVALUATION

In this section, we aim to answer the following questions:
1) how is the performance of ParaGAN compared to other
frameworks? 2) how much does each part of the system
contribute to the overall performance? And 3) how do the
numerical optimizations improve convergence?

In this section, we first evaluate the end-to-end perfor-
mance of ParaGAN using three metrics:

o steps per second measures the number of steps Para-
GAN can train per second;

e images per second measures the throughput of Para-
GAN trained with the ImageNet 2012 dataset;

e time to solution measures the time it takes to reach
150k steps on ImageNet at 128 X 128 resolution.

We first compare ParaGAN with other popular frame-
works for end-to-end performance (Sec. 6.2) and evaluate
the scaling efficiency for ParaGAN (Sec. 6.3). We ablate the
optimizations performed on ParaGAN in Sec 6.5.

6.1 Experiment Setup

We choose the BigGAN model and train it on the ImageNet
ILSVRC 2012 dataset as our evaluation method because of
BigGAN’s profound impact on high-resolution image gen-
eration and its high computational requirements (Table 1),
and ImageNet’s wide variety of classes (1000 classes) also
presents a significant training challenge. The evaluations
were conducted using V100 GPU and TPU v3.

While we use BigGAN to benchmark ParaGAN, our frame-
work is generally applicable to other GAN architectures and
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datasets, and it is not tightly coupled with any specific accel-
erator backends.

6.2 Framework-level Experiments

We compare ParaGAN with StudioGAN [15] and native Ten-
sorFlow [23] for GPU performance in Fig. 7. For each of
the experiments, BigGAN is trained on ImageNet 128 X 128
resolution. We use 8x Tesla V100 GPUs except for ParaGAN-
8TPU setting which employs 8 TPU.

We observe that ParaGAN outperforms both the native
TensorFlow and StudioGAN with 8 GPUs. We conjecture
that the performance gain on the GPU setting is mainly at-
tributed to the use of congestion-aware data pipeline and
hardware-aware layout transformations. We also observe
that the performance gap is further pronounced when switch-
ing to the TPU as the accelerator. The following evaluations
use the TPU as the accelerator unless otherwise specified.

6.3 Scaling Experiments

We will discuss the strong and weak scaling results in this
section. In the strong scaling experiments, we keep the to-
tal workload constant and vary the number of workers to
examine the speedup on time-to-solution. Whereas in the
weak scaling experiments, we keep the per worker workload
(batch size per worker) constant and increase the number of
workers.

6.3.1 Strong Scaling. For strong scaling experiments, we fix
the total batch size to be 512 and train for 150k steps as target
workload. Note that to be consistent with other experiments,
we train on BigGAN at 128 X 128 resolution, which is smaller
than the model trained in Fig. 1. We aim to study the effect
of decreased per-worker workload when scaling.
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Figure 8: Strong scaling with ParaGAN. Each TPU chip
has two accelerators.

As can be seen from Fig 8, with an increasing number of
workers, the time to solution decreases from over 30 hours
to 3 hours. We note that the scaling efficiency drops from
128 to 512 workers (64 to 256 TPU chips). This is because as
we fix the global batch size to 512, the per-worker workload
drops from 4 samples to 1 sample per batch, which under-
utilizes the TPU. Thus, the time spent on communication
overweights the computation when the batch size is too
small. This is also verified by Fig 8, where the image per
second barely improves with an increasing number of accel-
erator workers. However, when the workload can saturate
the accelerator, the scaling efficiency can be near optimal as
shown in Fig. 1.

6.3.2  Weak Scaling. In the weak scaling experiments, we fix
the batch size per worker and evaluate the performance of
our framework by increasing the number of workers. Firstly,
we find the largest batch size for a single accelerator that
does not lead to out-of-memory error. Then, we scale the
total batch size proportionally concerning the number of
workers. Therefore, the amount of workload per worker is
kept identical. The weak scaling experiments examine how
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Figure 9: Weak scaling with ParaGAN.

well ParaGAN can handle communication with an increasing
number of workers.

As can be seen in Fig. 9, the trend in step-per-second is
relatively steady even when using 1024 workers. It shows
that ParaGAN can scale out well to a large number of workers
while keeping a high scaling efficiency. It is worth noting
that, as the number of workers scales, the system will be
more likely to suffer from network jittering and congestion.
A relatively flat curve (Fig. 9a) indicates that the data pipeline
optimization in ParaGAN is effective in case of congestion.

6.4 Accelerator Utilization

The basic computing unit of TPU is MXU (matrix-multiply
unit). The utilization of MXU measures the time MXU is
being occupied, and higher utilization is more desirable.

We compare the accelerator utilization of BigGAN 128x128
on baseline [23] and ParaGAN. Fig. 10 shows that ParaGAN
outperforms native implementation with higher MXU uti-
lization across different TPU configurations. We wish to
highlight that even 2% improvement can be important when
scaling to thousands of workers.

It is also worth noting that, with an increasing number of
accelerators, the amount of communication increases, but
ParaGAN can maintain a relatively higher utilization than
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Figure 10: Accelerator utilization of BigGAN trained
with native TensorFlow and ParaGAN.

native implementation, and the gap is increasing. It indicates
that computation still dominates the training time as com-
pared to native TensorFlow, and ParaGAN can keep up with
scaling out.

6.5 Ablation Study

We present the ablation study for the system optimizations
in Table 2. For the numerical optimizations, since the conver-
gence also depends on the underlying GAN architecture and
datasets, we leave them to be decided by the users. Results
in Table 2 are collected on BigGAN trained on ImageNet at
128x128 resolution on 128 TPUv3 accelerators, under the
same batch size (2048) from the original paper [3].

Data pipeline provides 8-15% performance improvement
over the baseline. When the number of accelerators increases,
network jitter caused by congestion is more likely to hap-
pen, making data loading the weakest point in the training
process. In ParaGAN, we try to saturate the accelerators by
dynamically adjusting the buffer budget for the data pipeline.
This is generally applicable, and ParaGAN enables this fea-
ture by default.

We compare the performance of our congestion-aware
pipeline with TensorFlow’s native data pipeline (tf.data). To
ensure the results are comparable, they are run at the same
time on the same type of machine pointing to the same
dataset storage node, and latency is measured at the time
taken to extract a batch of data. As shown in Fig. 11, our
pipeline tuner has a lower variance in latency.

Low-precision (with bf16) training provides additional
14-17% performance gain and reduces TPU memory usage
by 24%. Bfloat16 format saves activation values in lower bits,
which makes it faster to load from memory and communicate
with other workers. We have observed while converting
activation to lower precision does not harm convergence,
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Table 2: Ablation Study of System Optimizations.

Effective System Optimizations Img/sec
Batch Size | Data Pipelining Layout Transformation Mixed-Precision
2048 6459
2048 v 7158 (+10.8%)
2048 v v 7412 (+3.9%)
2048 v v v 8539 (+15.2%)
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Figure 11: Data pipeline latency.

numerical instability may happen when converting gradient
and weight into bfloat16. In ParaGAN, the users can control
the precision for each layer.

Layout transformation provides 4% additional improve-
ment by increasing the accelerator utilization and reducing
kernel launch overhead. This is achieved using a profiling-
guided approach, as we observe that many smaller tensors
are fed into the same convolution kernel. Considering that
it optimizes the data layout, it is possible to integrate it into
the XLA as an HLO pass.

6.6 Generating High-Resolution Images

To our knowledge, we are the first to successfully train Big-
GAN at 1024 X 1024 resolution, which is 4 times higher than
the result shown in the original BigGAN. Training at high
resolution is particularly challenging because the generator
will need to use more channels and deconvolutional lay-
ers to generate more details. It is therefore more sensitive
to hyperparameters and initialization. Different from Pro-
gressGAN [16] where they use progressive growing to train
low-resolution images first before increasing the resolution,
we directly train it on 1024 X 1024 resolution, which is more
challenging, and it requires the numerical optimization tech-
niques we discussed.

Figure 12: Output of BigGAN at 1024x1024 resolution.
Best viewed in color.

The generated results (trained on ImageNet dataset) achieved
an Inception Score (IS) [32] of 239.3 and Fréchet Inception
Distance (FID) of 13.6. They are presented in Fig. 12 for visual
evaluation.

6.7 Convergence of Async. Update Scheme

We study the convergence behavior of the asynchronous up-
date scheme on SNGAN and present in Fig. 13. We observe
that the asynchronous update scheme can accelerate conver-
gence on smaller datasets, and the benefit is more obvious
in the early stage of training. However, the asynchronous
update scheme (Async G-512 D-256) struggles to converge
on high-resolution image generation tasks despite reaching
lower FID quicker than the synchronous versions before 16K
steps. Throughout repeated experiments and other models,
we observe similar results. We conjecture that the asynchro-
nous update scheme may be used to accelerate the earlier
stage of training before switching to the synchronous update
scheme for better convergence.

We recognize that theoretical convergence analysis in the
context of GAN training is an active area of research [2,
11, 18, 24, 28], and is particularly challenging. As GANs op-
erate on a two-party optimization problem, their conver-
gence is inherently difficult to guarantee, especially when
using stochastic gradient descent. Furthermore, introduc-
ing asynchrony, while beneficial in terms of performance,
adds another layer of complexity in analyzing convergence
and stability. While we have relied on empirical results to
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Figure 13: The FID score of images produced using the
Async Update scheme (lower is better). The number in
the legend represents batch size.

demonstrate the effectiveness of these techniques, we leave
it as future work to formalize a theoretical framework for
asynchronous GAN training.
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7 RELATED WORK

7.1 Generative Adversarial Network

Several methods for GANs are proposed to improve the per-
formance and training stability of GAN. SNGAN [27] uses
spectral normalization to stabilize the training of the dis-
criminator and achieves better inception scores relative to
previous studies. BigGAN [3] scales up the batch size and
the model size for training to generate high-resolution and
high-quality images. StyleGAN [17] enhances the generator
model to produce photorealistic faces with high resolution
meanwhile being able to control the style of the generated
image through varying the style vectors and noise. However,
the above works were less focused on the training accelera-
tion aspect.

7.1.1  Mode Collapse. Mode collapse is a common type of
GAN failure where the generator fails to produce a good
variety of samples that can fool the discriminator. When it
happens, the generator sticks with a set of similar-looking
output patterns without progressing, and the discriminator
can almost always classify the generated samples. Essen-
tially, the generator’s optimization process reaches a saddle
point, and rotates through the small set of output. Several
approaches have been proposed to try to solve the problem.
VEEGAN [33] features a reconstruction network reversing
the generator by mapping samples to random noise. Unrolled
GAN [26] uses a loss function for the generator concerning
an unrolled optimization of the discriminator. This way, the
generator training can be adjusted by both current outputs
and optimal outputs of the discriminator. Still, mode collapse
remains challenging to identify and mitigate.

7.2 Distributed GAN Training

Existing works on distributed training for GAN are relatively
limited with a focus on the privacy-preserving perspective.
Since GAN consists of two sub-networks, a common ap-
proach is to let multiple discriminators serve one centralized
generator using parameter server [4, 10, 29]. The central gen-
erator sends synthesized output images to the distributed
discriminators, and the discriminators update the generator
with their predictions. FeGAN [9] instead deploys a com-
plete GAN on each device to address the data skewness
and mode collapse issue. AI-GAN [14] tackles the image-
deraining problem by using a two-branch network that learns
a disentangled representation for the rain and background,
and jointly optimizes the two branches via mutual adversar-
ial optimization. [34] adopts the federated learning setting
on the medical image generation problem on low-resolution
images. [35] proposes a PDE-informed GAN architecture for
subsurface flow characterization problem, achieving 93.5%
scaling efficiency on 27500 GPUs with communication and
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load balancing optimizations. [22] presents a decentralized
training algorithm named DPOSG that caters to the non-
convex non-concave min-max optimization process.

To the best of our knowledge, ParaGAN is the first sys-
tem that efficiently scales GAN on high-resolution image
generation tasks on a large-scale cluster.

8 CONCLUSION

ParaGAN is a large-scale distributed GAN training frame-
work that supports high-resolution image generation with
near-linear scalability. ParaGAN is optimized with a dynamic
data pipeline, mixed-precision training, and layout transfor-
mation. We show that it is possible to train the generator and
discriminator independently using an asynchronous update
scheme and asymmetric optimization policy. ParaGAN scales
almost optimally to 1024 accelerators, and it can greatly re-
duce the time to train a GAN model from weeks to hours. We
believe ParaGAN can advance GAN research by accelerating
the training process.
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