
TAPAS: Fast and Automatic Derivation of Tensor Parallel
Strategies for Large Neural Networks

Ziji Shi∗
National University of Singapore

Alibaba Group
Singapore

ziji.shi@u.nus.edu

Le Jiang
Alibaba Group

Hangzhou, China
jiangle.jl@alibaba-inc.com

Ang Wang
Alibaba Group

Hangzhou, China
wangang.wa@alibaba-inc.com

Jie Zhang
Alibaba Group

Hangzhou, China
wanglin.zj@alibaba-inc.com

Chencan Wu
Alibaba Group

Hangzhou, China
danguge@buaa.edu.cn

Yong Li
Alibaba Group

Hangzhou, China
jiufeng.ly@alibaba-inc.com

Xiaokui Xiao
National University of Singapore

Singapore
xkxiao@nus.edu.sg

Wei Lin
Alibaba Group

Hangzhou, China
weilin.lw@alibaba-inc.com

Jialin Li
National University of Singapore

Singapore
lijl@comp.nus.edu.sg

Abstract
Tensor parallelism is an essential technique for distributed training
of large neural networks. However, automatically determining an
optimal tensor parallel strategy is challenging due to the gigantic
search space, which grows exponentially with model size and tensor
dimension. This prohibits the adoption of auto-parallel systems on
larger models.

We observe that neural networks usually contain repeated sub-
structures, and build an automatic parallelism framework named
TAPAS that eliminates redundant search efforts. TAPAS employs a
divide-and-conquer approach that efficiently folds the search space
by identifying those unique substructures. As a result, it runs at
sub-linear complexity concerning the model size, making it a scal-
able solution for training large-scale networks. Our evaluations
demonstrate that TAPAS outperforms the state-of-the-art auto-
matic parallelism frameworks by up to 160× in search speed on a
wide range of models, and the performance of derived strategies is
competitive or even better compared with the expert-engineered
Megatron-LM library.

CCS Concepts
• Computing methodologies→ Artificial intelligence; • Com-
puter systems organization→ Distributed architectures.

∗Work done during internship at Alibaba Cloud.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP ’25, San Diego, CA
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2074-1
https://doi.org/3754598.3754677

Keywords
Automatic Parallelism, Distributed Training

ACM Reference Format:
Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Chencan Wu, Yong Li, Xiaokui
Xiao, Wei Lin, and Jialin Li. 2025. TAPAS: Fast and Automatic Derivation of
Tensor Parallel Strategies for Large Neural Networks. In Proceedings of 54th
International Conference on Parallel Processing (ICPP ’25). ACM, New York,
NY, USA, 12 pages. https://doi.org/3754598.3754677

1 Introduction
Model scaling have been the cornerstones in neural network ad-
vancements in recent years, resulting inmany powerful and gigantic
models. Researchers have observed it that model can perform better
by increasing the number of parameter, training on larger datasets,
and supplying more compute [17]. This has led to the advance-
ments of many powerful models like DeepSeek-V3 [23], Llama [40],
and GPT [3]. However, the advancement of memory capacity in AI
accelerators has not kept in pace. Over the last decade, the memory
capacity of Nvidia GPUs has only increased by 16 times (from K20
to H100) to reach 80GB, whereas the size of neural networks has ex-
panded by 30,000 times (from AlexNet [19] to GPT-4o). To address
this problem, researchers propose model parallelism, where model
weights and optimizer stats are sharded across multiple machines
during distributed training.

However, several challenges on designing training strategies
surface as model size scales up. Firstly, manually specifying the
optimal parallel strategy is becoming increasingly difficult. While
large-language models (LLMs) are popular, there exists many non-
transformer-based models for targeted applications. For instance,
U-Net[35] is a "U"-shaped convolutional neural network (CNN)
used for image segmentation tasks, particularly in medical imag-
ing. Recommendation system usually adopts a two-tower model
architecture[7] for mapping user and item features respectively,
where each tower has a different design. Large-scale classification
models consist of a feature extraction module and a classification

https://orcid.org/0000-0001-9398-6507
https://orcid.org/0009-0002-9941-2322
https://orcid.org/0009-0007-2650-0504
https://orcid.org/0009-0003-5085-2535
https://orcid.org/0009-0005-1398-8235
https://orcid.org/0000-0001-9072-3170
https://orcid.org/0000-0003-0914-4580
https://orcid.org/0000-0002-3003-0150
https://orcid.org/0000-0003-3530-7662
https://doi.org/3754598.3754677
https://doi.org/3754598.3754677

ICPP ’25, September 08–11, 2025, San Diego, CA Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Chencan Wu, Yong Li, Xiaokui Xiao, Wei Lin, and Jialin Li

10
0

10
1

10
2

Search Time (Minutes)

6

7

8

9

10

11

12

13

TF
LO

P
S

Resnet

T5

GShard-MoE

TAPAS (Ours)
Alpa

Figure 1: Search time budget vs. training throughput.

module that scales with the number of targets. It is challenging
to design a simple strategy that fits all. On top of it, the optimal
parallel strategy often requires a combination of multiple paral-
lelization techniques and in-depth knowledge about the underlying
system. Therefore, relying solely on expert knowledge to design
such strategies is becoming intractable and error-prone.

Furthermore, the number of possible strategies in tensor paral-
lelism grows exponentially with model size. The total number of
possible tensor parallel strategies is determined by the Cartesian
product of number of tensors and their orders across all tensors
in the model. Since recent models can contain thousands of ten-
sors, the total number of possible strategies quickly grows beyond
what is feasible to explore exhaustively. For instance, DeepSeek-V3
has 91997 weight tensors, and Llama3.1-405B has 1140 weight ten-
sors. Assuming each tensor has at least three dimensions (batch,
sequence, hidden), there are 778.6 trillion and 1.5 billions possible
tensor parallel strategies respectively. Therefore, performing ex-
haustive search over the entire search space can be prohibitively
expensive in practice, limiting the adoption of existing automatic
model parallel systems.

On top of this, strategy validation becomes computationally ex-
pensive as the number of candidate strategies grows. To ensure
the new parallel strategy is mathematically equivalent as the origi-
nal model, each strategy needs to be validated. As the number of
candidate strategies scales up, the current dry-run or randomized-
testing-based validation method can be a performance bottleneck,
and we must design better validation scheme to early-stop on in-
feasible strategies.

Due to the challenges above, existing state-of-the-art solutions
for training auto-parallelism usually suffer from prohibitively long
search time. Concretely, Alpa takes 5.8 hours to search on aGShardMoE-
2.4B model, yet it is projected to take more than 6 million hours
to derive the strategy for a 240 billion counterpart. This scalability
limitation makes it challenging to employ auto-parallel systems on
large neural network models.

In this work, we propose a novel automatic tensor parallel sys-
tem that significantly reduces the strategy search time without
compromising strategy quality, as shown in Figure 1. It is based
on the key observation that repeated substructures (i.e., reused

layers/operator groups) are commonplace in network architectures.
These repeated substructures can be exploited to effectively fold
the search space to increase strategy derivation speed. We further
show that a parallel strategy, when applied to two similar layers in
different parts of the model, exhibits similar resource requirements.
This is because the same layers share equivalent communication,
computation, and memory access patterns. A direct corollary is
that a single parallel schedule, once derived, can be reused for all
repeating layers without loss of efficiency.

Guided by this observation, our approach folds the search space
by identifying the set of unique sub-computational graphs, each
representing a unique network. Thereafter, we restrict the search
space from the entire computational graph to the set of unique sub-
graphs, resulting in an exponential decrease in search complexity.
To further accelerate the strategy validation process, we adopt an
early-stopping framework on the candidate strategy. After that,
the remaining challenge is to ensure the optimized subgraphs will
combine to form a valid solution. We employ static analysis to ver-
ify that the derived sub-strategies are valid and compatible, and
that the final parallel strategies maintain mathematical equivalence
with the original model. In the end, our system selects the best
strategy using a communication-based cost model and reconstructs
the parallelized computational graph.

We present TAPAS (Tensor Auto Parallelisation), an automatic
parallel framework that efficiently derives tensor parallel strategy
for a given neural network. TAPAS requires no expert annotations,
and achieves 20 − 160× search time speedup over the state-of-the-
art auto-parallel framework Alpa [51]. With the growing size of
foundation models, TAPAS proves to be a scalable option. We fur-
ther demonstrate that TAPAS can identify a tensor parallel strategy
with comparable performance as expert-designed solutions like
Megatron-LM [38] or DeepSpeed[33].

We summarize our contribution as the following:
• We identify the problem that automatic searching for a par-
allel strategy can be slow and inefficient, formulate the prior
works under one view, and provide a grounded analysis of
the complexity.
• Observing that parallel strategies are similar for similar layer-
s/blocks, we propose a computational graph pruning method
that efficiently folds the search space into a limited set of
subgraphs.
• We design and implement TAPAS, an automatic tensor paral-
lel framework. TAPAS can discover tensor parallel strategies
with better or matching performance than the State-of-the-
Art strategies, while being two orders of magnitude faster in
searching.

2 Related Work
In this section, we outline the current research landscape for model
parallelism and automatic parallelism.

2.1 Model Parallelism
Tensor parallelism and pipeline parallelism are two commonly used
approaches for model parallel training.

2.1.1 Pipeline Parallelism (PP). Pipeline parallelism divides amodel
by layers and assigns each group of layers to a separate device [11,

TAPAS: Fast and Automatic Derivation of Tensor Parallel Strategies for Large Neural Networks ICPP ’25, September 08–11, 2025, San Diego, CA

Framework Search Space Search Algorithm Strategy Validation Overall
FlexFlow 𝑁 (4𝐸, 4𝑉) 𝑂 (𝐵) 𝑂 (𝑉 + 𝐸) 𝑂 (𝐵𝑉 + 𝐵𝐸)

Alpa 𝑁 (𝑘𝐸, 𝑘𝑉) Inter-Op: 𝑂 (𝑉 2𝐿)
Intra-Op: 𝑂 (𝐸 (𝑉 + 𝐸)) 𝑂 (𝑉 + 𝐸) 𝑂 (𝑉 2𝐿(𝑉 + 𝐸2))

TAPAS 𝑁 (𝐸
2𝐶𝐿 ,

𝑉
2𝐶𝐿) 𝑂 (𝐸+𝑉

𝐿
) 𝑂 (𝐸

𝐿
) 𝑂 (𝐸+𝑉

𝐿
)

Table 1: Complexities of selected auto parallel frameworks. 𝐸 and 𝑉 are the number of connections and number of vertices in
the computational graph respectively, 𝐿 is the number of layers, 𝐶 is the frequency of repeated substructure.

14, 26, 29]. A training batch is split into micro-batches so that differ-
ent devices can compute in an overlapped fashion. The efficiency
of PP is determined by the bubble time, where devices are idle due
to unsatisfied dependency. To keep bubble time low, each pipeline
stage should use similar amounts of memory and computation so
that workloads remain balanced[29]. In practice, the heterogene-
ity in models or layer interdependency may limit even pipeline
splitting. For example, large classification models often end with a
heavy fully-connected output layer, and encoder–decoder models
can suffer from cross-attention dependencies between encoder and
decoder stages.

2.1.2 Tensor Parallelism (TP). Tensor parallelism, also called tensor
sharding, partitions each layer at the tensor level and places each
shard on a different device [27, 36, 38]. When a full weight or
activation tensor is required, TP uses collective operations such as
all-gather or all-reduce to reassemble the full tensor from its shards.

Compared to PP, TP typically incurs higher communication over-
head because all devices in the group must exchange data. In addi-
tion, the space of possible TP configurations is much larger than
for PP, making it more challenging to find an optimal partitioning.

2.2 Automatic Parallelism
With rich options for parallel strategy, it has become difficult to
determine which one to use for distributed training. Some existing
works focus on building customized training systems for specific
models like embedding model [24, 49], Generative Adversarial Net-
works [37], Mixture-of-Expert models [12, 28], and Graph Neural
Networks [44, 50]. Those systems base their optimizations onmodel-
specific characteristics and thus cannot generalize to new models.
Automatic parallelism is a recent line of research on automatically
selecting parallel strategies for distributed training with minimal
user intervention.

Because of the vast search space of parallel strategies, existing
works on automatic parallelism either rely on user annotation or
brute-force searches over the all possible candidates.

2.2.1 Directive-based approaches. Directive-based automatic par-
allelism relies on expert annotations to derive parallel strategies.
Those annotations are usually bound to specific model dimensions.
For example, Mesh TensorFlow [36] infers the operator partition-
ing scheme based on user-defined directives to scale single-device
programs. Whale [15] allows for incorporating user annotation to
perform semi-auto parallelisation for large models and introduces a
hardware-aware load balance algorithm. However, directive-based
automatic parallelism approaches require users to have a deep un-
derstanding of both the system and the model, and the hard-coded

user annotations may not be transferable when either the model or
system changes.

2.2.2 Search-based approaches. Recent work has proposed fully
automatic approaches based on search algorithms to optimize dis-
tributed DNN training. For example, Tofu [43] uses a recursive
search algorithm to derive a communication-efficient schedule for
the CNN and RNNmodels, but it does not generalize to Transformer-
based architectures with many denseMatMul operators. Leveraging
the discrete nature of candidate spaces, Flexflow [16] uses Markov-
Chain Monte Carlo search to find the best parallel strategy for
DNN models. While this approach works well for small-scale neu-
ral networks, it cannot scale well on large neural networks without
properly engineered heuristics. Alpa [51] adopts a two-level op-
timization approach: it uses an inter-operator optimization pass
to cluster operators, and a secondary intra-operator optimization
pass to find tensor parallel strategies within the cluster. Unity [41]
represents both parallelisation and algebraic transformations in a
unified manner, and uses a hierarchical search algorithm to identify
an optimized sequence of graph substitutions.

2.2.3 Challenge. While search-based approaches have demonstrated
promising results, they encounter a major obstacle: the exponential
growth of the search space leads to a prohibitively long search
time. Specifically, for neural networks, each N-dimensional tensor
offers N+1 possible strategies: not sharding, or sharding along the
N-th dimension. Consequently, for a neural network represented
as 𝐺 (𝐸,𝑉) with 𝑉 tensors, the number of possible tensor parallel
strategies can reach up to (𝑁 + 1)𝑉 . As a result, identifying an
optimal sharding strategy is beyond the capabilities of polynomial
time algorithms, underscoring the critical challenge of managing
the vast search space efficiently.

This exponential increase in strategy space has led to impractical
search time to derive parallel schedules for large models, which
we will later show in subsection 5.2. The search speed problem has
become an emerging bottleneck in training foundation models.

3 Approach
Can we accelerate the derivation by leveraging the insights from
the model architecture? In this section, we begin by introducing
two common patterns of model scaling (by width and by depth), and
the challenges associated with the existing approaches in handling
these cases. We then formulate the problem of finding the parallel
strategy. In the end, we propose to use graph pruning to reduce the
search space.

ICPP ’25, September 08–11, 2025, San Diego, CA Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Chencan Wu, Yong Li, Xiaokui Xiao, Wei Lin, and Jialin Li

3.1 Motivating Examples
We review common model scaling techniques, and propose that
these techniques can be grouped into two major categories: scaling
on the width by increasing the dimension of layers (e.g., adding
the number of classes, adding attention heads, or increasing the
convolutional channels), or scaling on the depth by increasing
the number of layers.

We give two concrete examples of model scaling below.
In the context of e-commerce, a wide range of merchandise

exists, potentially numbering in millions to billions. Consequently,
a product image classification model such as ResNet [13] requires
an exceptionally wide fully connected (FC) layer to classify it. When
the number of classes reaches 100,000, the FC layer will comprise
205M floating point numbers, significantly outweighing the feature
extraction module, which stands at a modest 24M parameters.

In the scaling-on-depth scenario, we examine models based on
the transformer architecture. Currently, most large languagemodels
employ the transformer layer [42], which includes an attention
module followed by a feedforward network. In the quest for scale,
dense transformer models typically stack more transformer layers
on top of each other [2, 9, 10, 48], driven by the observation that
larger models usually perform better [21, 39, 46]. Because of the
uniformity in model architecture, there exists potential for reusing
the sharding pattern discovered for one layer across all transformer
layers [27].

In summary, it is increasing difficult to build tailored training
systems in response to exponentially growing model sizes. How to
automatically and quickly devise a parallel strategy to train these
models? We formulate the problem of the automatic derivation of
parallel strategy as a graph transformation problem, and present
the challenges in the next section.

3.2 Problem Formulation
We formulate the problem using the graph representation of neural
networks. All neural networks can be represented as a directed
acyclic graph 𝐺 (𝐸,𝑉) comprised of 𝐿 layers. The set of vertices 𝑉
represents the operators, and the set of edges 𝐸 represents the data
flow from producer to consumer operators. During the forward
pass, an edge represents an activation tensor, while in the backward
phase, an edge represents a gradient or error tensor. A layer 𝐿𝑖 ∈ 𝐿
could consist one or more nodes. The training cluster is modeled
as 𝑆 (𝑚,𝑛) where𝑚 is the number of worker nodes, and 𝑛 is the
number of accelerators per worker node. A parallel strategy 𝑃𝐺
is a graph transformation on 𝐺 that preserves the mathematical
equivalence. The goal is to find an optimal parallel strategy 𝑃𝐺

∗

such that: given any input, the output is equivalent and the training
throughput is maximized.

The end-to-end duration to produce an optimal schedule is a
critical metric for an auto-parallel system. We identify three main
factors that contribute to this overall completion time: the size of
the search space, the time complexity of the searching algorithm,
and the speed of the evaluation method. Out of them, the search
space is the most important factor as it determines the input size
of the other two factors.

Observation #1: repeated subgraphs commonly exist in
large models. As we see earlier, a major challenge faced by auto-
parallel systems is the search space explosion problem. Our key
observation is that both scaling by width or depth techniques start
with a base subgraph, i.e., a group of layers or operators, and expand
from it. For instance, large-scale pre-trained language models such
as BERT [9] and T5 [30] consist of tens of transformer layers, and
multi-class object classification networks like ResNet-50 [13] are
made of repeated convolutional layers. In DeepSeek-v3/R1 model,
the basic components are MLP, self-attention, and MoE layers. This
indicates that we can save much effort by restricting the search on
the subgraphs instead of the whole graph, where a lot of search
efforts are wasted on identical structures.

Observation #2: the performance of repeated subgraphs is
identical across the model. Furthermore, by analyzing expert-
engineered parallel schedules [27, 31, 34], we observe that parallel
schedules are primarily identical for the same type of layers. The
underlying reason is the same layers share the same amount of com-
munication, computation, and memory access patterns. Therefore,
their performance should also be similar.

This has motivated us to explore the possibilities of reusing the
parallel schedules discovered for the same layer to save search
effort. Specifically, we first identify the unique subgraphs through
pattern matching, derive the parallel strategy for each subgraph,
then apply the same strategy to the rest of the subgraphs.

Another challenge we face is the complexity of parallel imple-
mentations of operators. Given the huge variety of operators, with
each of them having multiple possible sharding implementations,
how to flexibly represent all possible combinations, and ensure
the final implementation is correct? To answer this, we adopt an
enumerate-then-validate approach by representing all possible strat-
egy combinations using a decision tree-like structure, then validat-
ing the tree and performing early stopping if necessary. By doing
so, we avoid running the strategies and saved efforts on incorrect
strategies.

4 Design and Implementation
4.1 Overview
Based on the insights, we design TAPAS, a tensor auto-parallel
framework focusing on the strategy derivation speed. TAPAS signif-
icantly reduces redundant search efforts by shrinking the search
space at different levels without compromising the strategy quality.

As depicted in Figure 2, given any neural network, TAPAS first
converts the graph into groups of operators named GraphNodes
(Step 1). TAPAS then performs subgraph mining, restricting the
search space from the whole graph to the set of unique subgraphs
(Step 2). After finding the unique subgraphs, TAPAS enters the
Strategy Exploration phase by enumerating all possible parallel
strategies for each unique subgraph based on the sharding patterns
(Step 3). After that, it validates each strategy to ensure the new
computational graph can be correctly reconstructed later(Step 4).
At the end of the Strategy Exploration phase, all remaining can-
didate strategies are evaluated using the cost model (Step 5). In
the end, TAPAS takes the best parallel strategy and reconstructs it
back to the computational graph for execution on DL framework
backends like TensorFlow.

TAPAS: Fast and Automatic Derivation of Tensor Parallel Strategies for Large Neural Networks ICPP ’25, September 08–11, 2025, San Diego, CA

④ Validation

⑤ Query

① Convert to GraphNode ② Subgraph Mining

Strategy
Explorer

Graph
Pre-processor

Cost Model Strategy
Validator

Neural Network
(Computational Graph)

③ Strategy
Enumeration ?

x

Graph
Reconstructor

: Column-major split

: Row-major split

: worker 0 : worker 1

Figure 2: TAPAS system architecture.

4.2 Intermediate Representation
TAPAS preprocesses the computational graph into Intermediate
Representations (IRs) to facilitate the derivation of parallel strate-
gies. Compared to other deep learning IRs like MLIR HLO [20],
TAPAS IR groups operators that are collectively used together. Each
group of operators(GraphNodes) is associated with a set of possible
sharding implementations (ShardingPatterns) expressed using the
Split-Replica-Communication (SRC) expression. Once the sharding
rules are determined, the associated costs are also decided, which
are then used to evaluate the strategies.

GraphNode. GraphNode is the basic unit for deriving the parallel
strategy. It is a container of operators collectively used together.
GraphNode is introduced because the sharding decision is interre-
lated within a layer: a decision on the previous tensor will affect
the tensor after. In the GraphNode representation, TAPAS tracks the
input/output shape and the split axis of each tensor. For instance,
in Figure 3, a dense layer can be a GraphNode, which consists of a
matrix multiplication (MatMul) op, an addition (BiasAdd) op, and
an activation (ReLU) op that has no weight.

ShardingPattern. A ShardingPatterns is a possible parallelised
implementation of a GraphNode. For instance, a 2D matrix weight
can be split on either dimension or replicated. Therefore, a GraphN-
ode can have multiple valid ShardingPatterns. For each GraphNode,
TAPAS defines its sharding patterns using the SRC expression (sub-
subsection 4.2.1) to separate the definition from implementation.

MatMul BiasAdd ReLU

MatMul MatMul

BiasAdd BiasAdd

ReLU ReLU

AllReduce

MatMul MatMul

BiasAdd BiasAdd

AllGather

ReLU ReLU

Input Output

In In

OutOutSh
ar

di
ng

Pa
tt

er
n

C0
G

ra
ph

N
od

e

Out = CAGReLU[S1(MatMul(In))
 +S1(BiasAdd))]

Out =ReLU[CAR(S0(MatMul(In)))
 +R(BiasAdd)]

(m,n) (m, p) (m, p) (m, p)

(m, p) (m, p)

Co
m

pu
ta

tio
na

l
G

ra
ph

Out = ReLU [MatMul(In)+BiasAdd]

Co
st C1

(m, 1/2p) (m, 1/2p)

(n, p) (m, p)

(m, 1/2p)(m, 1/2p)

tapas.DenseLayer()

: Operation (m,n): Tensor Dimension SRC Expression

Figure 3: Overview of graph transformation for dense layer.

Once the implementations are decided, TAPAS can estimate its cost
based on the communication pattern and tensor size.

Parallel strategy. A parallel strategy is a parallelized implemen-
tation of the original graph. It is constructed by substituting the
GraphNodes with their parallel implementations. The cost of a par-
allel strategy is calculated as the sum of the costs of all constituting
sharding patterns.

4.2.1 Split-Replica-Communication Expression. TAPAS represents
all parallel strategies using an abstraction called Split- Replica- Com-
munication (SRC):

Split. Split means sharding the tensor on a target axis, after
which different devices store different partitions. For example, 𝑆0 (𝑇)
means sharding tensor 𝑇 on the first axis. Under this view, data
parallelism is just a special case for tensor parallelism where the
tensor shards on the batch dimension.

Replica. Replica (𝑅(𝑇)) means to replicate the tensor 𝑇 on dif-
ferent devices. For instance, in data parallelism, the weight tensors
are replicated while the input tensors are shared.

Communication. Additional communication operators may be
needed to combine the partial results. For instance, AllReduce (𝐶𝐴𝑅)
is needed in data parallel to aggregate gradients, while AllGather
(𝐶𝐴𝐺) is required to exchange partial values after a split operation.
It is worth noting that a parallel schedule may not include all three
strategies.

Under the SRC expression, an operation

𝑌 = 𝑂𝑝 (𝐴, 𝐵)
can be expressed using SRC expression as:

ICPP ’25, September 08–11, 2025, San Diego, CA Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Chencan Wu, Yong Li, Xiaokui Xiao, Wei Lin, and Jialin Li

𝑌 = 𝐶 (𝑂𝑝 (𝑆/𝑅(𝐴), 𝑆/𝑅(𝐵))
With the SRC expression, we can define general tensor parallel

rules for each operator as ShardingPattern. After the best parallel
strategy is selected, sharding patterns will be materialized (recon-
structed) into a parallelized graph.

The benefits of using SRC is threefold. Firstly, compared to the
abstractions in other works [41, 43, 47], SRC reduces the amount
of effort necessary to define parallel implementations for new op-
erators/layers. Secondly, having known the tensor shape, SRC can
enable symbolic shape checks to validate the parallel strategies.
This is crucial because most consecutive sharding patterns are not
compatible, and the search can backtrack earlier if a strategy is
deemed invalid. Last but not least, SRC can be used to express
complex patterns through nested expression.

4.3 Subgraph Mining
Given a GraphNode graph, TAPAS searches for the set of unique
subgraphs within it. In order to find significant subgraphs to avoid
excessive search, we can control the minimal threshold for sub-
graph occurrence and subgraph size using minSupport and minSize
respectively.

Algorithm 1 Apriori Frequent Subgraph Search
Require: G(V, E), minSupport, minSize
Ensure: Set of subgraphs with at least minSize nodes
1: Initialize 𝐹 ← empty list ⊲ Initialize frequent subgraphs
2: Initialize 𝐶 ← list of V ⊲ Initialize candidate set
3: for each subgraph 𝑠 in 𝐶 do
4: if Count(𝑠 in G) ≥ minSupport then
5: Add 𝑠 to 𝐹

6: 𝐶 ← subgraphs in 𝐹 ⊲ Candidates for merging
7: for 𝑘 = 2 to |𝑉 | do
8: 𝐶𝑘 ←Merge subgraphs in 𝐹𝑘−1 that share edges
9: for each subgraph 𝑠 in 𝐶𝑘 do
10: if Count(𝑠 in G) ≥ minSupport and |𝑠 | ≥ minSize then
11: Add 𝑠 to 𝐹𝑘 ⊲ Add subgraph of size 𝑘
12: if 𝐹𝑘 is empty then
13: Break ⊲ Stop if no more freq. subgraph of size 𝑘
14: 𝐶 ← subgraphs in 𝐹𝑘

return 𝐹

Our subgraph mining algorithm is inspired by the Apriori algo-
rithm in frequent itemset mining. It starts by treating each node as a
single-node subgraph and considers them as initial candidates. Each
candidate subgraph is then counted in the graph for frequency, and
if its frequency surpasses the minimum support threshold and its
size meets a minimum number of nodes criterion, it is considered
a significant subgraph and added to the output list (line 3-6). It
then iteratively expands these candidates by merging the existing
frequent subgraphs that share a common edge, thereby generat-
ing larger candidate subgraphs (line 8). The algorithm repeats this
process until it finds no new frequent subgraphs. The final output
is a list of all identified frequent subgraphs that contain at least a
specified number of nodes. As minSupport is directly linked to the
frequency of subgraph, we set to be the number of layers.

4.4 Parallel Strategy Exploration

A

B

In

A0 A1

B0 B1 B0 B1

In

A0 A1

B0 B1 B0 B1

: GraphNode : ShardingPattern Invalid: A0 à B1, A1 à B1
Valid: A0 -> B0, A1 -> B0

Strategy
Generation

In Strategy
Validation

Figure 4: Strategy generation and validation.

After finding the frequent subgraphs, TAPAS moves on to the
Strategy Exploration phase, as illustrated in Figure 4. Recall that
each subgraph consists of one or more GraphNodes, with each
of them potentially having multiple ShardingPatterns. Therefore,
this step is accomplished by enumerating all possible combina-
tions of ShardingPatterns within each subgraph and subsequently
interlinking them.

However, simply connecting these ShardingPatterns does not
guarantee a functional parallel strategy. Because of possible issues
such as shape mismatch between subgraphs, not all combinations
yield valid parallel strategies. To address this, TAPAS employs the
SRC to conduct a symbolic shape check on the ShardingPatterns.

The symbolic shape check involves analyzing the shapes of ten-
sors in the computational graph and ensuring that the operations
are compatible across ShardingPatterns. The shape propagation is
made possible with GraphNodes (which records the shape informa-
tion of the original tensor) and ShardingPattern (which tracks the
transformation rules). As shown in Figure 4, the strategy is valid
only if every pair of consecutive ShardingPattern is valid; other-
wise, it is deemed invalid and we can early stop it without exploring
this strategy to the fullest. The compatibility test is particularly
crucial when tensors are divided across different devices, and we
observe that the vast majority of the strategies are invalid.

Following the validation of strategies, TAPAS constructs the suc-
cessful parallel strategies using a Breadth-First-Search (BFS) start-
ing from the root node. Subsequently, TAPAS evaluates the perfor-
mance of each strategy with a cost model and selects the strategy
offering the best performance.

4.5 Graph Reconstruction
After strategy validation, the best strategy is chosen from the candi-
dates based on the cost model. TAPAS reconstructs the best strategy
back into the computational graph form with the help of the Shard-
ingPatterns. Each ShardingPattern gets materialized into operators
by replacing the original subgraphs with the parallelized implemen-
tation specified by SRC. After the parallelized graph is ready, it is
passed to the training framework backend for execution.

4.6 Communication-Based Cost Model
An accurate cost model is critical to the evaluation of candidate
strategies. We profile different tensor parallel schedules of T5-large
model using 8 and 16 GPUs (denoted as 8w/16w), and present the
result in Figure 5.

TAPAS: Fast and Automatic Derivation of Tensor Parallel Strategies for Large Neural Networks ICPP ’25, September 08–11, 2025, San Diego, CA

8w-DP
8w-MHA

8w-FFN

8w-Megatron
16w-DP

16w-MHA

16w-FFN

16w-Megatron
0

2500

5000

7500

10000

12500

S
ec

/it
er

at
io

n
(m

s)

Time breakdown for tensor parallel plans

Computation
Communication

Figure 5: Profiling result for TP schedules of T5-large. DP:
data parallel,MHA: sharding attention only, FFN : sharding
the feed-forward layer only.Megatron refers to the strategy
that shards both MHA and FFN.

Each node is equipped with 8 GPUs and interconnected using
Ethernet. We observe that inter-node communication is the main
bottleneck for tensor parallelism, because the internode intercon-
nect (eg. Ethernet) is usually an order of magnitude slower than
the intranode interconnect (eg. PCI-e or NVLink). Therefore, TAPAS
employs a communication-based cost model.

Prior works [1, 16, 41, 51] adopt the vanila 𝛼 − 𝛽 cost model,
where 𝛼 captures the network latency for each message, and 𝛽

captures the inverse of bandwidth. The total time to send a message
of size 𝑁 is 𝑇 (𝑁) = 𝛼 + 𝛽𝑁 .

However, this does not account for the communication-computation
overlapping scheme in deep learning frameworks. Specifically, we
observe that overlapping exists in the backward propagation phase,
inside the collective communication operation, and adjacent com-
putation and communication. We therefore propose two changes to
the cost model to capture the overlapping effect on communication
cost.

Gradient/weight update overlap in backward pass. During the
backward propagation phase, gradients are calculated with respect
to model’s parameter and synchronized across workers. Instead
of waiting for the entire gradient computation to finish before
starting communication, most DL frameworks implement a gradient
overlapping techniques allow the gradient to be communicated as
soon as they are computed. Therefore, gradient synchronization
on later layers without blocking the backward computation on
early layers. We find this optimization technique to reduce the
total execution time of backward phase, and use a discount factor
𝛾 (0 < 𝛾 ≤ 1) to quantify the extent of gradient overlap during the
backward pass.

Communication-reduction overlap in collective communications.
Collective communication may be overlapped with preceding/suc-
ceeding communication operations by decomposition into smaller

and data-independent steps [4, 32, 45]. Inside the collective commu-
nication operation (eg. AllReduce), the reduction and communica-
tion may also be overlapped. TAPAS uses a coefficient 𝜖 (0 < 𝜖 ≤ 1)
to capture the overlapping effect of each collective communication
primitive, collected through offline profiling.

Solution. TAPAS addresses these issues using an analytical cost
model that treats backward/forward pass separately and different
collectives separately. The total cost is the summation of all costs of
sharding patterns 𝑝 found along the computational graph’s critical
path. The cost of each sharding pattern is determined by the latency
and transmission delay, where the latency is linear with respect to
the number of participating workers (𝑊), and transmission delay
is a factor of the message size in forward pass(𝑁𝑓 𝑤𝑑) and back-
ward pass (𝑁𝑏𝑤𝑑), the bandwidth (1/𝛽), and overlapping factor of
collective communication (𝜖).

𝑁𝑝 = 𝑁𝑓 𝑤𝑑 (𝑝) + 𝑁𝑏𝑤𝑑 (𝑝) (1)
𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝) = 𝛼 ′ ·𝑊 (2)
𝑇𝑡𝑟𝑎𝑛𝑠 (𝑝) = 𝛽 · (𝑁𝑓 𝑤𝑑 (𝑝) + 𝛾 ∗ 𝑁𝑏𝑤𝑑 (𝑝)) · 𝜖 (3)

𝐶𝑜𝑠𝑡 (𝑃𝐺 , 𝑆) =
𝑃∑︁

𝑝=1
(𝑇𝑙𝑎𝑡𝑒𝑛𝑐𝑦 (𝑝) +𝑇𝑡𝑟𝑎𝑛𝑠 (𝑝)) (4)

5 Evaluation
We seek to answer the following questions during the evaluation:
• Search speed and training performance: How fast are the
search time and throughput of TAPAS compared with other
automatic and manual frameworks?
• Scaling experiments: How well can TAPAS scale on larger
models and larger systems?
• Interpretation of discovered strategies: What can be learned
from the discovered parallel strategies?
• Micro benchmarks: How robust is the subgraph mining al-
gorithm?

5.1 Evaluation Setup
TAPAS is implemented using 12K lines of Python code on Ten-
sorFlow (TF). We assess TAPAS across a diverse set of models, in-
cluding the dense transformer model (T5), the sparse mixture-of-
experts model (GShard MoE), and the convolutional neural network
(ResNet). T5 features an encoder-decoder transformer architecture,
representing a broad spectrum of large language models like BERT,
Llama-1/2/3, GPT-1/2/3, and M6.

We choose Alpa as a evaluation baseline for automatic intra-op
parallel framework. For expert-engineered tensor parallel frame-
works, we employ Megatron [27] for the T5 model and Deep-
Speed [33] for non-transformer models such as ResNet and GShard
MoE, in line with the evaluation methods in [8, 41, 51].

Given the diversity of backend frameworks in use, such as Ten-
sorFlow, PyTorch, and JAX, we follow the convention in [27, 51]
by reporting the performance in FLOPs. This involves calculating
the FLOPs for dense matrix multiplication operations per iteration
and then dividing this by the iteration time. This method allows
for a consistent and comparable evaluation of performance across
different frameworks. In cases where evaluations are conducted on

ICPP ’25, September 08–11, 2025, San Diego, CA Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Chencan Wu, Yong Li, Xiaokui Xiao, Wei Lin, and Jialin Li

26M 44M 228M 536M 843M
10

0

10
1

10
2

R
es

N
et

100M 200M 350M 770M 1.4B
10

0

10
1

10
2

T5

380M 690M 1.3B 2.4B
Number of Parameters

10
1

10
2

G
S

ha
rd

-M
oE

Alpa TAPAS

Figure 6: End-to-end search time (inminutes) under different
frameworks.

the same backend (between TAPAS and TensorFlow in Figure 8),
we report performance metrics directly in terms of iteration time
to ensure accuracy and relevancy.

The evaluation was performed on Company A’s public cloud
nodes. Each node was equipped with 756GB main memory, 2× Intel
8163 CPUs, and 8× Nvidia V100 SXM2 32GB GPUs. The evaluations
were performed using FP32 precision. These compute nodes were
interconnected by 100 Gbps ethernet.

Each representative model is scaled to various sizes. The T5
model is scaled by adding new layers (depth), the MoE model is
scaled by adding experts and layers (width and depth), and the
ResNet model is scaled by enlarging the classification layer (width).

5.2 End-to-End Evaluation
In this section, we compare with auto-parallel framework Alpa on
both the search time and quality of the discovered strategies.

5.2.1 Search time. Search time is defined by the duration of strat-
egy derivation, excluding framework initialization time and actual
training time. In Figure 6, we present the end-to-end search time
for increasing model sizes.

To scale the model size along the width, we increase the size
of the classification layer of the ResNet model. The base ResNet50
model has 1024 classes in the fully connected (FC) layer. As we
increase the dimensions for the FC layer from 1024 to 10K, 100K,
250K, and 400K, the total number of parameters also scales up. As
shown in the large-scale classification task with ResNet, TAPAS is
two orders of magnitude faster than Alpa in finding the optimal
solution, outperforming the latter by 103 − 162×.

To scale the model along the depth, we increase the number of
transformer layers for T5. Figure 7 shows that, with an increasing
number of parameters, TAPAS can still find a plausible schedule in
under 15 mins, which is 21 − 67× faster than Alpa.

We further analyze the time breakdown during the search. The
efficient graph pruning algorithm greatly shrinks the search space
while preserving key optimization space. Moreover, the analytical
cost model used by TAPAS does not require operator profiling. As

a result, Alpa takes 197 minutes to search 16 candidate strategies,
while TAPAS requires only 6 minutes to examine 729 strategies for
T5-large.

5.2.2 Training speed. We evaluate the performance of both manual
and automatic parallel frameworks, and present them in Figure 7.
ResNet result. Both Alpa and TAPAS excel compared to data paral-
lelism (DP), particularly in handling larger dense layers where Alpa
tends to falter. DP duplicates the weight across all workers, quickly
exhausting the memory. On the other side, DeepSpeed addresses
the memory constraints by sharding the optimizer states and gra-
dients across workers. However, this leads to an increase in the
amount and size of messages, particularly for convolutional opera-
tors during the backward passes, impacting efficiency. TAPAS shards
the fully connected (FC) layers while duplicating the base model,
which effectively minimizes the memory burden and reduces the
overhead associated with transmitting smaller messages.
T5 result. Data parallelism and Megatron perform better than
both Alpa and TAPAS when the model size is less than 760M pa-
rameters, while both Alpa and TAPAS outperform them on larger
models. This is because Alpa performs reduce-scatter optimiza-
tion to save communication, while TAPAS uncovers a novel parallel
strategy that shards the feed-forward layer while replicating the
self-attention layer inside a transformer. The self-attention layer
is usually computationally intensive, but the feed-forward layer
has two dense matrices. Therefore, sharding only the feed-forward
layer can reduce the amount of weight updates while keeping the
computational intensity high.
GShard-MoE result. In theGShard-MoE experiments, TAPAS found
an expert-level parallel strategy similar to Alpa, but it was discov-
ered using a much smaller search space. The strategy partitions
the expert dimension in the MoE layers, while it replicates the
weight for non-expert layers like attention and MoE gates. Deep-
Speed adopts a similar strategy as the original GShard implementa-
tion [21], and combines that with ZeRO-2 DP. However, DeepSpeed
falls short when the number of experts does match with the number
of worker GPUs. This highlights the need for automatic parallelism.

5.3 Scaling Experiments
We scale TAPAS on ResNet, T5, and MoE models with an increasing
number of GPUs while keeping the per-GPU workload constant,
and present the result in Figure 8.
Baseline. The baseline is TensorFlow trained with data parallelism.
For all models, we first saturate the GPU memory by increasing the
batch size until OOM occurs on a single GPU, and linearly scale the
batch size with the number of GPUs. The size of the parameters of
all base models (on 1 GPU) ranges from 0.77B to 1.3B.
Result.We set a time limit of 120 minutes for the exhaustive search
version of TAPAS. It is worth noting that the performance gap
between the exhaustive search version of TAPAS (TAPAS-ES) and
the subgraph-pruned version(TAPAS-GP) is within 1.5% across
the experiments. However, when increasing the size of compute
cluster, TAPAS-ES frequently exceeds the time limit due to increased
number of parallel strategies. This highlights the challenge of vast
search space in auto-parallel frameworks.

We also observe that TAPAS uncovers distinct sharding strate-
gies on different cluster scales for the same model. For MoE (1.3B)

TAPAS: Fast and Automatic Derivation of Tensor Parallel Strategies for Large Neural Networks ICPP ’25, September 08–11, 2025, San Diego, CA

1024 10K 100K 250K 400K
Number of Classes

0

5

10

Th
ro

ug
hp

ut
 (T

FL
O

P
S

 p
er

 G
P

U
)

x x

ResNet

100M 200M 300M 760M 1.4B
Model Size

0

5

10

x x

T5

380M 690M 1.3B 2.4B
Model Size

0

5

10

x x

GShard-MoE

Data Parallel DeepSpeed Megatron Alpa TAPAS

Figure 7: Performance across frameworks on 8 GPUs. "×" represents out-of-memory failure.

1 4 8 16 24 32
Number of GPUs

0.0

0.2

0.4

0.6

Ite
ra

tio
n

Ti
m

e
 (S

ec
)

X X XX X X

ResNet

1 4 8 16 24 32
Number of GPUs

0

1

2

3

4

X

T5

1 4 8 16 24 32
Number of GPUs

0

2

4

6

X X XX X X X

GShard-MoE

Data Parallel TAPAS-ES TAPAS-GP

Figure 8: Weak scaling performance. TAPAS-ES: TAPAS with exhaustive search. TAPAS-GP: TAPAS with subgraph pruning.

model, TAPAS discovers that a nested Expert+Tensor Parallel strat-
egy works best by further sharding the feedforward network within
an expert layer. This can be helpful when using wide expert layers,
which is common for language translation tasks.

On the ResNet (843M) model, we observe that when the size of
the classification layer increases, more memory buffers are needed
for caching gradients on each worker, hence the DP performance
is worse than the TAPAS’ schedule from 8 GPUs. After that, OOM
error occurs on the DP schedule.

5.4 Visualization of discovered strategies.
We plot the parallel strategies found by TAPAS in Figure 9. Our
exploration uncovers that TAPAS is not only capable of identifying
fully sharded strategies that mirror Megatron-LM, but also can
it unearth novel strategies. These strategies involve partitioning
either the multi-head attention (MHA-only) or the feed-forward
layers (FFN-only). Intriguingly, the most effective strategy for dense
transformers is the FFN-only plan. This is because FFN is composed
of large MatMuls and can still achieve high arithmetic intensity
even after splitting, whereas attention module has smaller weights
and lower arithmetic intensity. Therefore, when memory ceiling
permits, it is better to replicate the attention weight while splitting
on the FFN weights. TAPAS also discovers other fully-sharded plans,
but they are not selected as they will incur higher communica-
tion cost with the same amount of compute reduction. Our result

Q

K

V Out

Up DownX

Self-Attention MLP

Q

K

V Out

Up Down

Q

K

V Out

Up Down

X

X

: Column-wise Parallel : Row-wise Parallel : Replicate

Up DownX

Self-Attention MLP

Up Down

Q

K

V Out

Up Down

X

X

Q

K

V Out

Q

K

V Out

Megatron

FFN-only

Data Parallel MHA-only

Fully-Sharded

Figure 9: Visualization of selected sharding strategies discov-
ered by TAPAS. LayerNorm/dropout/activation are ignored for
presentation clarity.

challenges the belief that expert-engineered baseline is universally
optimal, and demonstrates the effectiveness of our approach.

ICPP ’25, September 08–11, 2025, San Diego, CA Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Chencan Wu, Yong Li, Xiaokui Xiao, Wei Lin, and Jialin Li

0 10 20 30 40 50 60
min_duplicates

10
1

10
3

S

ub
gr

ap
hs x=1, y=6561

x=2, y=5

T5-Large-770M
ResNet152-100K-262M

0 10 20 30 40 50 60
Minimum size of subgraph

10
0

10
1

10
2

P
ru

ni
ng

 ti
m

e
(s

ec
)

Figure 10: Subgraph pruning evaluations.

5.5 Micro Benchmark
In Algorithm 1, minSize determines the threshold for subgraph
size. If the threshold is too low, it will still face the exploding search
spaces by dealing with too many small graphs; if the threshold
is too high, we may see too few subgraphs, resulting in a longer
search time or sub-optimal policy. Since the architecture of different
neural networks may vary significantly, it is desirable to have a
robust threshold that does not require extensive tuning.

We explore a range of minSize and report the number of unique
subgraphs found and subgraph mining algorithm running time in
Figure 10. Take the T5-Large model with 770M parameters as an
example: when the threshold is 1, meaning the graph is kept un-
folded, it contains 6561 nodes. After subgraph mining, the number
of unique subgraphs has drastically been reduced to just 5. As the
threshold changes, the number of identified unique subgraphs stays
relatively stable, showing that our algorithm is robust on different
model architecture.

Furthermore, we observe that the subgraph mining algorithm
is efficient, taking less than 12 seconds to find the subgraphs for
T5-large, less than a second for the 152-layer 100K-class ResNet
model, and 30 seconds for the 1.3B MoE network. This signals that
TAPAS can scale well on large foundation models.

5.6 Limitation and Future Work
To extend TAPAS to pipeline parallel strategy, we can update the
subgraph selection algorithm by choosing the sub-computation
graphs as pipeline stages while satisfying load balancing constraints
across subgraphs.

To further optimize the memory consumption, TAPAS could lever-
age other orthogonal techniques such as mixed precision [25], gra-
dient recomputation [6, 18]. Also, gradient checkpointing can be
used to offload the selected GraphNode onto the main memory.

It is worth noting that our approach may share some similarities
with the pattern-matching technique used in TVM [5] for operator
fusion. The key difference is TAPAS targets the training setting,
which is more challenging due to having dynamic tensor shape
and unknown subgraph pattern. TVM mainly targets the inference

setting, where the patterns are pre-defined in the ML compilers
based on expert experience, and the tensor shapes are known.

6 Conclusion
We present TAPAS, an automatic parallelism framework that effi-
ciently discovers tensor parallel plans for large neural networks.
Leveraging the observation that shared subgraphs widely exist in
neural networks, we design TAPAS, an automatic parallel frame-
work that significantly reduces redundant search effort by sub-
graph mining and early stopping. We also built an analytical cost
model that accurately captures the amount of communication dur-
ing tensor parallel training. The best parallel strategies discovered
by TAPAS not only measure up to expertly engineered strategies,
but also excel in search speed, reducing the strategy derivation
time by two orders of magnitude compared to the state-of-the-art
system. In summary, TAPAS provides a scalable, fast, and automatic
solution for tensor parallelism that can help alleviate the burden of
manual tuning.

Acknowledgments
This research is supported by the Ministry of Education, Singapore,
under its Academic Research Fund Tier 1 (T1 251RES2409).

References
[1] Behnaz Arzani, Siva Kesava Reddy Kakarla, Miguel Castro, Srikanth Kandula,

Saeed Maleki, and Luke Marshall. 2023. Rethinking Machine Learning Col-
lective Communication as a Multi-Commodity Flow Problem. arXiv preprint
arXiv:2305.13479 (2023).

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language models are few-shot learners.
Advances in Neural Information Processing Systems 2020-Decem (2020).

[4] Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei Duan, Peng Sun, Xingcheng
Zhang, and Chao Yang. 2024. Centauri: Enabling Efficient Scheduling for
Communication-Computation Overlap in Large Model Training via Communi-
cation Partitioning. In Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
3. 178–191.

[5] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578–594.

[6] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training deep
nets with sublinear memory cost. arXiv preprint arXiv:1604.06174 (2016).

[7] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[8] Weihao Cui, Zhenhua Han, Lingji Ouyang, YichuanWang, Ningxin Zheng, Lingx-
iao Ma, Yuqing Yang, Fan Yang, Jilong Xue, Lili Qiu, et al. 2023. Optimizing dy-
namic neural networks with brainstorm. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). 797–815.

[9] Jacob Devlin, Ming Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of deep bidirectional transformers for language understanding. Tech-
nical Report. 4171–4186 pages. https://github.com/tensorflow/tensor2tensor

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2021. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In

https://github.com/tensorflow/tensor2tensor

TAPAS: Fast and Automatic Derivation of Tensor Parallel Strategies for Large Neural Networks ICPP ’25, September 08–11, 2025, San Diego, CA

9th International Conference on Learning Representations (ICLR 2021). https:
//openreview.net/forum?id=YicbFdNTTy

[11] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, SiyuWang, Zhen Zheng, Chuan
Wu, Guoping Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei
Lin. 2021. DAPPLE: A pipelined data parallel approach for training large models.
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP 21 (2021), 431–445. doi:10.1145/3437801.3441593

[12] Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng
Shi, and Qin Li. 2022. FasterMoE: Modeling and Optimizing Training of Large-
Scale Dynamic Pre-Trained Models. In Proceedings of the 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (Seoul, Republic of
Korea) (PPoPP ’22). Association for Computing Machinery, New York, NY, USA,
120–134. doi:10.1145/3503221.3508418

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Vol. 2016-Decem. 770–
778. doi:10.1109/CVPR.2016.90

[14] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, Hyouk Joong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. GPipe: Efficient training of giant neural networks using pipeline
parallelism. Advances in Neural Information Processing Systems 32 (2019).

[15] Xianyan Jia, Le Jiang, Ang Wang, Wencong Xiao, Ziji Shi, Jie Zhang, Xinyuan Li,
Langshi Chen, Yong Li, Zhen Zheng, Xiaoyong Liu, and Wei Lin. 2022. Whale:
Efficient Giant Model Training over Heterogeneous GPUs. In USENIX Annual
Technical Conference. USENIX.

[16] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model
Parallelism for Deep Neural Networks. In Proceedings of the 2nd Conference on
Machine Learning and Systems (MLSys). https://proceedings.mlsys.org/paper/
2019/file/78530480f14bc7b2879ae05070c78c11-Paper.pdf

[17] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models. (2020). http://arxiv.org/abs/2001.
08361

[18] Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He,
Jared Roesch, Tianqi Chen, and Zachary Tatlock. 2021. Dynamic Tensor Re-
materialization. In Proceedings of the 9th International Conference on Learning
Representations (ICLR). https://openreview.net/forum?id=Yl2aDBJRTm Spotlight
paper.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[20] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Olek-
sandr Zinenko. 2021. MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). 2–14. doi:10.1109/CGO51591.2021.9370308

[21] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. 2021. GShard:
Scaling Giant Models with Conditional Computation and Automatic Sharding.
In 9th International Conference on Learning Representations (ICLR 2021). https:
//openreview.net/forum?id=qrwe7XHTmYb

[22] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn
Song, and Ion Stoica. 2021. TeraPipe: Token-Level Pipeline Parallelism for Train-
ing Large-Scale Language Models. In Proceedings of the 38th International Con-
ference on Machine Learning (ICML 2021). 6543–6552. https://proceedings.mlr.
press/v139/li21d.html

[23] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. 2024. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437 (2024).

[24] Xupeng Miao, Hailin Zhang, Yining Shi, Xiaonan Nie, Zhi Yang, Yangyu Tao, and
Bin Cui. 2022. HET: Scaling out Huge Embedding Model Training via Cache-
enabled Distributed Framework. In Proceedings of the VLDB Endowment (PVLDB),
Vol. 15. 312–320. https://www.vldb.org/pvldb/vol15.html

[25] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich
Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh
Venkatesh, and Hooman Wu. 2018. Mixed Precision Training. Proceedings of the
6th International Conference on Learning Representations (ICLR 2018) (2018).

[26] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
Pipedream: Generalized pipeline parallelism for DNN training. SOSP 2019 -
Proceedings of the 27th ACM Symposium on Operating Systems Principles (2019),
1–15. doi:10.1145/3341301.3359646

[27] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley,
Mostofa Patwary, Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie
Bernauer, Bryan Catanzaro, Amar Phanishayee, andMatei Zaharia. 2021. Efficient
Large-Scale Language Model Training on GPU Clusters Using Megatron-LM.
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC (2021). doi:10.1145/3458817.3476209

[28] Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue, Lingxiao
Ma, Gang Cao, and Bin Cui. 2023. FlexMoE: Scaling Large-scale Sparse Pre-
trained Model Training via Dynamic Device Placement. In Proceedings of the 2023
ACM SIGMOD/PODS International Conference on Management of Data (SIGMOD).
110:1–110:19. https://dl.acm.org/doi/10.1145/3588964.3591467

[29] Penghui Qi, XinyiWan, Nyamdavaa Amar, andMin Lin. 2024. Pipeline Parallelism
with Controllable Memory. arXiv preprint arXiv:2405.15362 (2024).

[30] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text transformer. Technical Report. 1–67
pages. http://jmlr.org/papers/v21/20-074.html.

[31] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:
Memory optimizations toward training trillion parameter models. International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2020-Novem (2020). doi:10.1109/SC41405.2020.00024

[32] Saeed Rashidi, Matthew Denton, Srinivas Sridharan, Sudarshan Srinivasan,
Amoghavarsha Suresh, Jade Nie, and Tushar Krishna. 2021. Enabling compute-
communication overlap in distributed deep learning training platforms. In 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 540–553.

[33] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deep-
speed: System optimizations enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 3505–3506.

[34] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. ZeRO-offload:
Democratizing billion-scale model training. 2021 USENIX Annual Technical Con-
ference (2021), 551–564. https://www.deepspeed.ai/tutorials/

[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[36] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Pen-
porn Koanantakool, Peter Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake Hechtman. 2018. Mesh-TensorFlow: Deep Learn-
ing for Supercomputers. In Neural Information Processing Systems.

[37] Ziji Shi, Jialin Li, and Yang You. 2024. ParaGAN: A Scalable Distributed Training
Framework for Generative Adversarial Networks. In Proceedings of the 2024 ACM
Symposium on Cloud Computing.

[38] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis
(SC19). https://dl.acm.org/doi/10.1145/3295500.3356143

[39] Yi Tay, Mostafa Dehghani, Jinfeng Rao,William Fedus, Samira Abnar, HyungWon
Chung, Sharan Narang, Dani Yogatama, Ashish Vaswani, and Donald Metzler.
2022. Scale Efficiently: Insights from Pre-Training and Fine-Tuning Transformers.
In 10th International Conference on Learning Representations (ICLR 2022). https:
//openreview.net/forum?id=aNiqNrhNzwb

[40] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[41] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain,
Quintero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat Mccormick,
Jamaludin Mohd-yusof, Jongsoo Park, Misha Smelyanskiy, Alex Aiken, Pat Mc-
cormick, Jamaludin Mohd-yusof Xi, and Luo Dheevatsa. 2022. Unity : Acceler-
ating DNN Training Through Joint Optimization of Algebraic Transformations
and Parallelization This paper is included in the Proceedings of the. (2022).
https://www.usenix.org/conference/osdi22/presentation/unger

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in Neural Information Processing Systems 2017-Decem (2017),
5999–6009.

[43] Minjie Wang, Chien chin Huang, and Jinyang Li. 2019. Supporting very large
models using automatic dataflow graph partitioning. Proceedings of the 14th
EuroSys Conference 2019 (2019). doi:10.1145/3302424.3303953

[44] QiangeWang, Yanfeng Zhang, HaoWang, Chaoyi Chen, Xiaodong Zhang, and Ge
Yu. 2022. Distributed GNNTraining with Hybrid Dependencies Processing. In Pro-
ceedings of the 2022 ACM SIGMOD/PODS International Conference on Management
of Data (SIGMOD). 1061–1073. https://dl.acm.org/doi/10.1145/3514221.3517836

[45] Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hecht-
man, Dehao Chen, Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang,
et al. 2022. Overlap communication with dependent computation via decomposi-
tion in large deep learning models. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 1. 93–106.

[46] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al.

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.mlsys.org/paper/2019/file/78530480f14bc7b2879ae05070c78c11-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/78530480f14bc7b2879ae05070c78c11-Paper.pdf
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=Yl2aDBJRTm
https://doi.org/10.1109/CGO51591.2021.9370308
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://proceedings.mlr.press/v139/li21d.html
https://proceedings.mlr.press/v139/li21d.html
https://www.vldb.org/pvldb/vol15.html
https://doi.org/10.1145/3341301.3359646
https://doi.org/10.1145/3458817.3476209
https://dl.acm.org/doi/10.1145/3588964.3591467
http://jmlr.org/papers/v21/20-074.html.
https://doi.org/10.1109/SC41405.2020.00024
https://www.deepspeed.ai/tutorials/
https://dl.acm.org/doi/10.1145/3295500.3356143
https://openreview.net/forum?id=aNiqNrhNzwb
https://openreview.net/forum?id=aNiqNrhNzwb
https://www.usenix.org/conference/osdi22/presentation/unger
https://doi.org/10.1145/3302424.3303953
https://dl.acm.org/doi/10.1145/3514221.3517836

ICPP ’25, September 08–11, 2025, San Diego, CA Ziji Shi, Le Jiang, Ang Wang, Jie Zhang, Chencan Wu, Yong Li, Xiaokui Xiao, Wei Lin, and Jialin Li

2022. Emergent abilities of large language models. Transactions on Machine
Learning Research (TMLR) (2022). https://openreview.net/forum?id=yzkSUxE1e2

[47] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake Hechtman, Yanping Huang,
Rahul Joshi, Maxim Krikun, Dmitry Lepikhin, Andy Ly, Marcello Maggioni,
Ruoming Pang, Noam Shazeer, ShiboWang, TaoWang, Yonghui Wu, and Zhifeng
Chen. 2021. GSPMD: General and Scalable Parallelization for ML Computation
Graphs. (2021). http://arxiv.org/abs/2105.04663

[48] Fuzhao Xue, Ziji Shi, Futao Wei, Yuxuan Lou, Yong Liu, and Yang You. 2022.
Go wider instead of deeper. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 8779–8787.

[49] Hailin Zhang, Zirui Liu, Boxuan Chen, Yikai Zhao, Tong Zhao, Tong Yang, and
Bin Cui. 2024. CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-
scale Recommendation Models. In Proceedings of the 2024 ACM International
Conference on Management of Data (SIGMOD). https://dl.acm.org/doi/10.1145/
3639306

[50] Yuhao Zhang and Arun Kumar. 2023. Lotan: Bridging the Gap between GNNs
and Scalable Graph Analytics Engines. Proceedings of the VLDB Endowment 16, 3
(2023), 312–324. https://www.vldb.org/pvldb/vol16.html

[51] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen,
Yanping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Joseph E. Gon-
zalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Paral-
lelism for Distributed Deep Learning. In Proceedings of the 16th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 2022). 559–578.
https://www.usenix.org/conference/osdi22/presentation/zheng

A Complexity Analysis of Existing Works
Following the discussion on related work, we analyze the complexi-
ties of two other automatic model parallel frameworks and present
it in Table 1. We define the total complexity as:

𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑠𝑒𝑎𝑟𝑐ℎ_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

+ 𝑛𝑢𝑚_𝑝𝑙𝑎𝑛𝑠 ∗ 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦

A.0.1 FlexFlow. FlexFlow operates on four dimensions (Sample,
Operator, Attribute, and Parameter), and there was no space reduc-
tion. Therefore, the search space is𝑁 (4𝐸, 4𝑉). As search complexity,
FlexFlow employs the Markov chain Monte Carlo (MCMC) algo-
rithm. Thus, we use 𝐵 to denote the computational budget (num-
ber of trials) in MCMC sampling. Furthermore, within each trial,
it needs to evaluate its performance by querying the cost model
with Depth-First-Search(DFS), hence its evaluation complexity is
𝑂 (𝑉 + 𝐸).

A.0.2 Alpa. Alpa is formulated as a multi-level optimization prob-
lem: in the outer loop, it searches for the inter-op parallel plan using
dynamic programming; in the inner loop, it finds the intra-op par-
allel plan using integer linear programming. First, since it operates
at MLIR HLO, which is a finer IR than the TensorFlow operator,
we formulate the search space as 𝑁 (𝑘𝐸, 𝑘𝑉) where 𝑘 ≥ 1. In the
outer loops, it uses a similar algorithm to [22] to search for pipeline
slices and map the slices to devise mesh. Optimization like operator
clustering and early pruning reduces the outer loop complexity to
(𝑘𝑉)2𝐿. For the inner loop, since the exact complexity of their ILP
solver is unknown, we use a lower bound by performing a BFS from
each operator, and the complexity is given as 𝑘𝐸 (𝑘𝑉 + 𝑘𝐸). Finally,
each trial needs to evaluate its performance by querying the cost
model, so the evaluation complexity is 𝑘𝑉 + 𝑘𝐸.

A.0.3 TAPAS. In TAPAS, we first reduce the search space by con-
verting the TensorFlow graph to TAPAS graph (by𝐶×, where𝐶 ≥ 1).
We then prune the tree by layer, further reducing the complexity
to 𝑁 (𝐸

2𝐶𝐿 ,
𝑉
2𝐶𝐿). In the searching stage, the result is derived by

performing a BFS. Thus, the complexity is 𝑉+𝐸
2𝐶𝐿 . For the evaluation

stage, TAPAS needs to evaluate the cost of each plan by querying

Table 2: Ablation study of cost model optimizations. CF: con-
stant filter, GO: Gradient Overlapping, EC: Efficiency of Col-
lective Communications.

Baseline CF GO EC Acc@1 Acc@5 MRR
✓ 0.53 0.86 0.71
✓ ✓ 0.53 0.93 0.68
✓ ✓ ✓ 0.73 1 0.84
✓ ✓ ✓ ✓ 0.87 1 0.92

the cost model, which depends only on the size of the edges. Thus,
the evaluation cost is 𝐸

2𝐶𝐿 .

B Ablation Study on Cost Model Optimizations
TAPAS cost model outputs a score for each candidate strategy and
ranks them based on the score. We examine both the accuracy
(whether the best strategy returned by the cost model is indeed the
best strategy during runtime) and the order (how far off is the best
strategy in the ranking). In this section, we study the effectiveness
of optimizations on the cost model on 15 different architectures (5×
T5, 6× CNN, and 4×MoE model).

For top-K candidates, we use the following metrics for evalua-
tion:
• Accuracy@K: the probability of the best-performing strategy
being found within top-K of the cost model ranking; and
• Mean Reciprocal Ranking(MRR): the correctness of the rank-
ing weighted by the relative position of the best strategy in
ranking, defined as:

𝑀𝑅𝑅 =
1
𝑄

𝑄∑︁
𝑖=1

1
rank𝑖

where rank𝑖 is the rank of the ground truth best strategy in
the cost model ranking.

MRR captures the relative order of strategies by encouraging
better strategies placed at higher ranks. A higher MRR indicates
that the best-performing strategy is ranked higher. Since we have
15 model architectures, |𝑄 | = 15.

From Table 2, it’s clear that the performance enhancements in
our cost model primarily stem from communication overlap and
the efficiency of collective communication primitives. The former
optimization addresses non-overlapping communications, while
the latter takes into account efficiency variances among primitives,
resulting in better alignment with real training performance. The
act of filtering constant tensors, while it may not yield significant
improvements independently, is indeed a necessary step in the
process.

https://openreview.net/forum?id=yzkSUxE1e2
http://arxiv.org/abs/2105.04663
https://dl.acm.org/doi/10.1145/3639306
https://dl.acm.org/doi/10.1145/3639306
https://www.vldb.org/pvldb/vol16.html
https://www.usenix.org/conference/osdi22/presentation/zheng

	Abstract
	1 Introduction
	2 Related Work
	2.1 Model Parallelism
	2.2 Automatic Parallelism

	3 Approach
	3.1 Motivating Examples
	3.2 Problem Formulation

	4 Design and Implementation
	4.1 Overview
	4.2 Intermediate Representation
	4.3 Subgraph Mining
	4.4 Parallel Strategy Exploration
	4.5 Graph Reconstruction
	4.6 Communication-Based Cost Model

	5 Evaluation
	5.1 Evaluation Setup
	5.2 End-to-End Evaluation
	5.3 Scaling Experiments
	5.4 Visualization of discovered strategies.
	5.5 Micro Benchmark
	5.6 Limitation and Future Work

	6 Conclusion
	Acknowledgments
	References
	A Complexity Analysis of Existing Works
	B Ablation Study on Cost Model Optimizations

