
ParaGAN: A Cloud Training Framework for Generative Adversarial Networks

Challenge: Large-Scale GAN Training

Approach: Numerical and System Optimization Co-Design

Asynchronous Training

1. Evaluation

Ziji Shi1,2, Fuzhao Xue1, Jialin Li1, Yang You1
1National University of Singapore, 2Alibaba Group

a. Numerical instability

• Generative Adversaria Network has two subnetworks:

• Generator (G): synthesize images

• Discriminator (D): distinguish fake images from the
real ones

• Convergence is often not guaranteed

• Two subnetworks are optimized for contradicting
goals, and the convergence is defined as a Nash
Equilibrium

• G may be overly optimized for D, producing poor
image results

b. System challenges for large-scale training

• Successful GAN models take days to weeks to train

• Issues with datacenter-level distributed training:

• Network congestion prolongs unpredictable latency

• Each HW accelerator has different characteristics

• Existing works emphasize little on training speed

ISCA’23 ML for Computer Architecture and Systems (MLArchSys) Workshop | Orlando, FL, USA

Limitation & Future Work

a. Numerical optimizations for training stability

• Asynchronous Training

• Asymmetric Optimization

a. System optimizations for scalability

• Model size is rather small => Data parallelism suffices

• Congestion aware data pipeline

• Dynamically adjust the prefetch buffer size

• Moderate the impact of network jittering

• Hardware-aware layout transformation
• Improve accelerator utilization

Ø minimize zero padding

Ø convert tensor to HW-friendly data layouts

• Support CPU/GPU/TPU

Fig. 3: Profiling results of individual operators on TPU.
Model shown is BigGAN.

Fig. 5: ParaGAN example.

Fig. 4: Overview of ParaGAN.

a. Scaling manager

• In charge of hyper-parameter tuning

• Scaling strategy is set based on the profile
collected from the single-worker

b. Network backbone

• Implements several popular GAN backbones

• Easily extensible to other architectures

c. Evaluation metrics

• Standardized evaluation metrics

• Frechet Inceptions Distance(FID),

• Inception Score (IS)

• …

a. Motivation

• Previous works optimize both generator and discriminator in the same manner

• Can we decouple it by optimizing G and D separately?

b. Asynchronous training

• Let G and D run on different nodes within the same TPU Chip (each chip has two nodes)

• Sync gradient globally every other step, and cache the generated fake image

• Why it works?

• Add perturbation to the gradient (no long update each other immediately)

• Force G not to mimic a limited set of modes

• Also save memory and communication => enables the training of larger models

Example and Implementation

Fig. 1: GAN training process.

Fig. 2: Asymmetric optimization. Evaluation

Fig. 6: Async update scheme.

1. BigGAN end-to-end training: reduced from 15 days to 14 hours.
2. Scales to 1024 TPU nodes at 91% efficiency.
3. Enables direct generation of 1024x1024 images.

Fig. 7: FID of both update schemes. Lower is better.

1. More GAN architectures shall be evaluated.
2. Scale on larger clusters made of GPU
3. Adapt to stable diffusion models

Fig. 8: Scaling on 1024 TPU nodes. Fig. 9: Image generated at 1024x1024 resolution.

Fig. 10: Weak scaling on BigGAN (128x128)

a) Steps per second. b) Images per second.

