
TAP: Efficient Derivation of Tensor Parallel Plans for Large Neural Networks

Challenge: Memory Wall and Tensor Parallelism

Approach: Tensor Auto Parallelism (TAP)

Ziji Shi1,2, Le Jiang2, Jie Zhang2, Xianyan Jia2, Yong Li2,
Chencan Wu2, Jialin Li1, Wei Lin2

1National University of Singapore, 2Alibaba Group

a. Memory wall for large neural networks training

• In the last decade, the model size has increased ~240X every two years, while the GPU
memory has only doubled within the same amount of time.

• The memory wall problem has drawn much attention on model parallelism, where the
model weight are sharded.

b. Tensor parallelism

• Split the tensor and distribute on different devices

• A more general approach for training large models

• When a gigantic layer cannot be fitted into accelerator memory

• When pipeline parallelism cannot work well due to imbalanced pipeline

• Problem

• The size of decision space is too large

• Each 2D tensor has 3 possible choices, thus brute force method is O(3N)

• A neural network can have thousands to millions of tensors, taking several months to
find the best plan

• Expert annotation can be difficult, stiff, and error-prone

• Requires deep understanding on both system and neural network

• Annotations need to be updated when system/model changes

• Incorrect annotations may result in training halt or even failure

ISCA’23 Architecture and System Support for Transformer Models (ASSYST) Workshop | Orlando, FL, USA

Conclusion

Credit: Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism (2019)
Preprint Paper

a. Related work

• Expert-annotation driven

• MeshTensorFlow(NeurIPS’18), GSPMD (2021), Whale (ATC’22)…

• Automatic Parallelism

• FlexFlow(ICML’18), Tofu(EuroSys’18), Unity(OSDI’22), Alpa(OSDI’22)…

b. Key observations

• A neural network can be represented as a directed acyclic graph, within which only
contains a limited set of unique subgraphs.

• Layers (eg. dense, self-attention)

• Composite operators (eg. softmax)

• The parallel strategy for similar layers are similar

• For instance, Megatron-LM adopts a similar strategy for the Transformer layers

Design Overview

MatMul

BiasAdd

Relu
Input Output

MatMul

BiasAdd

Relu

GitHub Repo

Input

Output

Input

Neural Network

Sharding
Plan
Explorer

Cost
Model

Input

Parallelized Neural Network

① Convert ② Prune ③ Search

④Query

⑤ Rewrite

Output

Output

Compute/communication op Auxiliary op In/Out Entry point

a. Workflow

• Convert the original graph to a coarser graph representation

• Group operators serving a similar functionality

• Blue and yellow nodes were fused into a brown node

• Prune: Discover unique subgraphs by gradually expanding the smaller subgraphs

• Search within the subgraphs by enumerating all possible tensor parallel plans

• Query the analytical cost model for all plans and find the one that minimize
communication

• Validate and rewrite the plan into original graph format

b. Usage

Evaluations

• 20-160X faster in plan derivation
compared to SoTA Auto Parallel Framework
(Alpa)

• Discovered strategy has comparable
performance to Megatron

• TAP also discovers new partially sharded
plan that perform well when the memory is
not so constrained.

Time spent on parallel plan derivation.

Performance comparison with expert-designed Megatron-LM.

We present TAP, an automatic parallelism framework that
efficiently discovers tensor parallel plans for large models.
Leveraging the observation that subgraphs widely exist in
neural networks, we design a system that runs at sub-linear
end-to-end complexity w.r.t. to model size.

