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a. Memory wall for large neural networks training

• In the last decade, the model size has increased ~240X every two years, while the GPU 
memory has only doubled within the same amount of time.

• The memory wall problem has drawn much attention on model parallelism, where the 
model weight are sharded.

b. Tensor parallelism

• Split the tensor and distribute on different devices

• A more general approach for training large models

• When a gigantic layer cannot be fitted into accelerator memory

• When pipeline parallelism cannot work well due to imbalanced pipeline

• Problem

• The size of decision space is too large

• Each 2D tensor has 3 possible choices, thus brute force method is O(3N) 

• A neural network can have thousands to millions of tensors, taking several months to 
find the best plan

• Expert annotation can be difficult, stiff, and error-prone

• Requires deep understanding on both system and neural network

• Annotations need to be updated when system/model changes

• Incorrect annotations may result in training halt or even failure
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a. Related work

• Expert-annotation driven

• MeshTensorFlow(NeurIPS’18), GSPMD (2021), Whale (ATC’22)…

• Automatic Parallelism

• FlexFlow(ICML’18), Tofu(EuroSys’18), Unity(OSDI’22), Alpa(OSDI’22)…

b. Key observations

• A neural network can be represented as a directed acyclic graph, within which only 
contains a limited set of unique subgraphs.

• Layers (eg. dense, self-attention)

• Composite operators (eg. softmax)

• The parallel strategy for similar layers are similar

• For instance, Megatron-LM adopts a similar strategy for the Transformer layers
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a. Workflow

• Convert the original graph to a coarser graph representation

• Group operators serving a similar functionality

• Blue and yellow nodes were fused into a brown node

• Prune: Discover unique subgraphs by gradually expanding the smaller subgraphs

• Search within the subgraphs by enumerating all possible tensor parallel plans

• Query the analytical cost model for all plans and find the one that minimize 
communication

• Validate and rewrite the plan into original graph format

b. Usage

Evaluations

• 20-160X faster in plan derivation 
compared to SoTA Auto Parallel Framework 
(Alpa)

• Discovered strategy has comparable 
performance to Megatron

• TAP also discovers new partially sharded 
plan that perform well when the memory is 
not so constrained.

Time spent on parallel plan derivation. 

Performance comparison with expert-designed Megatron-LM.

We present TAP, an automatic parallelism framework that 
efficiently discovers tensor parallel plans for large models. 
Leveraging the observation that subgraphs widely exist in 
neural networks, we design a system that runs at sub-linear 
end-to-end complexity w.r.t. to model size.


