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Abstract
The scaling up of deep neural networks has been demon-

strated to be effective in improving model quality, but also
encompasses several training challenges in terms of train-
ing efficiency, programmability, and resource adaptability.
We present Whale, a general and efficient distributed train-
ing framework for giant models. To support various parallel
strategies and their hybrids, Whale generalizes the program-
ming interface by defining two new primitives in the form
of model annotations, allowing for incorporating user hints.
The Whale runtime utilizes those annotations and performs
graph optimizations to transform a local deep learning DAG
graph for distributed multi-GPU execution. Whale further
introduces a novel hardware-aware parallel strategy, which
improves the performance of model training on heterogeneous
GPUs in a balanced manner. Deployed in a production cluster
with 512 GPUs, Whale successfully trains an industry-scale
multimodal model with over ten trillion model parameters,
named M6, demonstrating great scalability and efficiency.

1 Introduction

The training of large-scale deep learning (DL) models has
been extensively adopted in various fields, including computer
vision [15, 30], natural language understanding [8, 35, 43, 44],
machine translation [17, 26], and others. The scale of the
model parameters has increased from millions to trillions, sig-
nificantly improving model quality [8, 24], but this has come
at the cost of considerable efforts to efficiently distribute the
model across GPUs. The commonly used data parallelism
(DP) strategy is a poor fit, since it requires the model replicas
in GPUs perform gradient synchronization proportional to the
model parameter size for every mini-batch, thus easily becom-
ing a bottleneck for giant models. Moreover, training trillions
of model parameters requires terabytes of GPU memory at
the minimum, which is far beyond the capacity of a single
GPU.

To address the aforementioned challenges, a series of new
parallel strategies in training DL models have been pro-

posed, including model parallelism (MP) [25], pipeline par-
allelism [20, 32], etc. For example, differing from the DP
approach where each GPU maintains a model replica, MP
partitions model parameters into multiple GPUs, avoiding gra-
dient synchronization but instead letting tensors flow across
GPUs.

Despite such advancements, new parallel strategies also
introduce additional challenges. First, different components
of a model might require different parallel strategies. Consider
a large-scale image classification task with 100K classes,
where the model is composed of ResNet50 [19] for feature
extraction and Fully-Connected (FC) layer for classification.
The parameter size of ResNet50 is 90 MB, and the parameter
size of FC is 782 MB. If DP is applied to the whole model, the
gradient synchronization of FC will become the bottleneck.
One better solution is to apply DP to ResNet50 and apply
MP to FC (Section 2.3). As a result, the synchronization
overhead can be reduced by 89.7%, thereby achieving better
performance [25].

Additionally, using those advanced parallel strategies in-
creases user efforts significantly. To apply DP in distributed
model training, model developers only need to program the
model for one GPU and annotate a few lines, and DL frame-
works can replicate the execution plan among multiple GPUs
automatically [27]. However, adopting advanced parallelism
strategies might make different GPUs process different parti-
tions of the model execution plan, which is difficult to achieve
automatically and efficiently [23,46]. Therefore, significant ef-
forts are required for users to manually place computation op-
erators, coordinate pipeline among mini-batches, implement
equivalent distributed operators, and control computation-
communication overlapping, etc. [26, 38, 41, 43]. Such an
approach exposes low-level system abstractions and requires
users to understand system implementation details when pro-
gramming the models, which greatly increases the amount of
user effort.

Further, the training of giant models requires huge com-
puting resources. In industry, the scheduling of hundreds of
homogeneous high-end GPUs usually requires a long queuing
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time. Meanwhile, heterogeneous GPUs can be obtained much
easier (e.g., a mixture of P100 [2] and V100 [3]) [21,47]. But
training with heterogeneous GPUs efficiently is even more
difficult, since both the computing units and the memory ca-
pacity of GPUs need to be considered when building the
model. In addition, due to the dynamic scheduling of GPUs,
users are unaware of the hardware specification when building
their models, which brings a gap between model development
and the hardware environment.

We propose Whale, a deep learning framework designed for
training giant models. Unlike the aforementioned approaches
in which the efficient model partitions are searched automat-
ically or low-level system abstractions and implementation
details are exposed to users, we argue that deep learning frame-
works should offer high-level abstractions properly to support
complicated parallel strategies by utilizing user hints, espe-
cially when considering the usage of heterogeneous GPU re-
sources. Guided by this principle, Whale strikes a balance by
extending two necessary primitives on top of TensorFlow [7].
Through annotating a local DL model with those primitives,
Whale supports all existing parallel strategies and their com-
binations, which is achieved by automatically rewriting the
deep learning execution graph. This design choice decouples
the parallel strategies from model code, and lowers them into
dataflow graphs, which not only reduces user efforts but also
enables graph optimizations and resources-aware optimiza-
tions for efficiency and scalability. In this way, Whale eases
users from the complicated execution details of giant model
training, such as scheduling parallel executions on multiple de-
vices, and balancing computation workload among heteroge-
neous GPUs. Moreover, Whale introduces a hardware-aware
load balancing algorithm when generating a distributed execu-
tion plan, which bridges the gap between model development
and the heterogeneous runtime environment.

We summarize the key contributions of Whale as follows:

1. For carefully balancing user efforts and distributed graph
optimization requirements, Whale introduces two new
high-level primitives to express all existing parallel
strategies as well as their hybrids.

2. By utilizing the annotations for graph optimization,
Whale can transform local models into distributed mod-
els, and train them on multiple GPUs efficiently and
automatically.

3. Whale proposes a hardware-aware load balancing al-
gorithm, which is seamlessly integrated with parallel
strategies to accelerate training on heterogeneous GPUs.

4. Whale demonstrates its capabilities by setting a new
milestone in training the largest multi-modality pre-
trained model M6 [28] with ten trillion model parame-
ters, which requires only four lines of code change to
scale the model and run on 512 NVIDIA V100M32
GPUs (Section 5.3.2).

Whale has been deployed as a production system for large-
scale deep learning training at Alibaba. Using heterogeneous
GPUs, further speedup of Bert-Large [13], Resnet50 [19],
and GNMT [48] from 1.2x to 1.4x can be achieved owing
to the hardware-aware load balancing algorithm in Whale.
Whale also demonstrates its capabilities in the training of
industry-scale models. With only four-line changes to a local
model, Whale can train a Multi-Modality to Multi-Modality
Multitask Mega-transformer model with 10 billion parameters
(M6-10B) on 256 NVIDIA V100 GPUs (32GB), achieving
91% throughput in scalability. What’s more, Whale scales
to ten trillion parameters in model training of M6-10T using
tensor model parallelism on 512 V100 GPUs (32GB), setting
a new milestone in large-scale deep learning model training.

2 Background and Motivation

In this section, we first recap the background of distributed
DL model training, especially the parallel strategies for large
model training. We then present the importance and the chal-
lenges of utilizing heterogeneous GPU resources. Finally, we
discuss the gaps and opportunities among existing approaches
to motivate the design of a new training framework.

2.1 Parallel Strategies

Deep learning training often consists of millions of iterations,
referred to as mini-batches. A typical mini-batch includes
several phases to process data for model updating. Firstly, the
training data is fed into the model layer-by-layer to calculate
a set of scores, known as a forward pass. Secondly, a training
loss is calculated between the produced scores and desired
scores, which is then utilized to compute gradients for model
parameters, referred to as a backward pass. Finally, the gra-
dients scaled by a learning rate are used to update the model
parameters and optimizer states.

Data parallelism. Scaling to multiple GPUs, data paral-
lelism is a commonly adopted strategy where each worker
holds a full model replica to process different training data
independently. During the backward pass of every mini-batch,
the gradients are averaged through worker synchronization.
Therefore, the amount of communication is proportional to
the model parameter size.

Pipeline Parallelism. As shown in Figure 1, a DL model
is partitioned into two modules, i.e., M0 and M1 (which are
also named pipeline stages), which are placed on 2 GPUs
respectively. The training data of a mini-batch is split into
two smaller micro-batches. In particular, GPU0 starts with
the forward of the 1st micro-batch on M0, and then it switches
to process the forward of the 2nd micro-batch while sending
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for image classification.
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Figure 4: Data parallelism on
heterogeneous GPUs

the output of the 1st micro-batch to GPU1. After GPU1 fin-
ishes processing forward and backward of the 1st micro-batch
on M1, GPU0 continues to calculate the backward pass for
M0 after receiving the backward output of M1 from GPU1.
Therefore, micro-batches are pipelined among GPUs, which
requires the runtime system to balance the load and overlap
computation and communication carefully [16, 20, 32, 54].
The model parallelism [11,12] can be treated as a special case
of pipeline parallelism with only one micro-batch.

Tensor Model Parallelism. With the growing model size,
to process DL operators beyond the memory capacity of the
GPU, or to avoid significant communication overhead across
model replicas, an operator (or several operators) might be
split over multiple GPUs. The tensor model parallelism strat-
egy partitions the input/output tensors and requires an equiv-
alent distributed implementation for the corresponding op-
erator. For example, Figure 2 illustrates the tensor model
parallelism strategy for a matmul operator (i.e., matrix multi-
plication) using 2 GPUs. A matmul operator can be replaced
by two matmul operators, wherein each operator is responsi-
ble for half of the original computation. An extra all-gather
operation is required to merge the distributed results.

In selecting a proper parallel strategy for model training,
both model properties and resources need to be considered.
For example, transformer [44] is an important model in natu-
ral language understanding, which can be trained efficiently
using pipeline parallelism on a few GPUs (e.g., 8 V100 GPUs
with NVLINK [4]). However, pipeline parallelism does not
scale well with more GPUs (e.g., 64 V100 GPUs). Given more
GPUs, each training worker is allocated with fewer operators,
of which the GPU computation is not sufficient enough to
overlap with the inter-worker communication cost, resulting
in poor performance. Therefore, a better solution is to apply
hybrid parallelism, where model partitions can be applied
with different parallel strategies in combination, and parallel
strategies can be nested. Particularly, for the training of a
transformer model on 64 GPUs, the model parameters can
be partitioned into 8 GPUs using a pipeline strategy, and ap-
ply model replica synchronization among 8 pipelined groups
using nested data parallelism. Moreover, different parallel
strategies can also apply to different model partitions for a hy-

brid. As an example, a large-scale image classification model
(i.e., 100K categories) consists of the image feature extraction
partition and the classification partition. The image feature ex-
traction partition requires a significant amount of computation
on fewer model parameters. Conversely, the classification par-
tition includes low-computation fully-connected and softmax
layers, which are often 10x larger in model size compared
to that of image feature extraction. Therefore, adopting a ho-
mogeneous parallel strategy will hinder the performance of
either partitions. Figure 3 illustrates a better hybrid parallelism
approach, in which data parallelism is applied for features
extraction partition, tensor model parallelism is adopted for
classification partition, and the two are connected.

2.2 Heterogeneity in GPU Clusters
Training a giant model is considerably resource-intensive [17,
33]. Moreover, distributed model training often requires re-
sources to arrive at the same time (i.e., gang schedule [21,50]).
In industry, the shared cluster for giant model training is usu-
ally mixed with various types of GPUs (e.g., V100, P100, and
T4) for both model training and inference [47]. Training gi-
ant models over heterogeneous GPUs lowers the difficulty of
collecting all required GPUs (e.g., hundreds or thousands of
GPUs) simultaneously, therefore speeding up the model explo-
ration and experiments. However, deep learning frameworks
encounter challenges in efficiently utilizing heterogeneous
resources. Different types of GPUs are different in terms
of GPU memory capacity (e.g., 16GB for P100 and 32GB
for V100) and GPU computing capability, which natively in-
troduces an imbalance in computational graph partition and
deep learning operator allocation. Figure 4 illustrates train-
ing a model using data parallelism on two heterogeneous
GPUs, i.e., V100 and T4. The V100 training worker com-
pletes forward and backward faster when training samples are
allocated evenly, thereby leaving idle GPU cycles before gra-
dient synchronization at the end of every mini-batch. Through
the awareness of hardware when dynamically generating an
execution plan, Whale allocates more training samples (i.e.,
batch-size=4) for V100 and the rest of 2 samples for T4 to
eliminate the idle waiting time. Combined with advanced
parallel strategies and the hybrids over heterogeneous GPUs,
different GPU memory capacities and capabilities need to
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be further considered when partitioning the model for effi-
cient overlapping, which is a complex process (Section 3.3).
Model developers can hardly consider all resources issues
when programming, and we argue that developers should not
have to. A better approach for a general deep learning frame-
work would be automatically generating the execution plan
for heterogeneous resources adaptively.

2.3 Gaps and Opportunities

Recent approaches [20, 26, 38, 41, 43] have been proposed for
giant model training, however, with limitations as a general
DL framework. Firstly, they only support a small number of
parallel strategies, which lack a unified abstraction to support
all of the parallel strategies and the hybrids thereof. Secondly,
significant efforts are required in code modifications to utilize
the advanced parallel strategies, compared with local model
training and DP approach. Mesh-tensorflow [41] requires the
re-implementation of DL operators in a distributed manner.
Megatron [43], GPipe [20], DeepSpeed [38], and GShard [26]
require user code refactoring using the exposed low-level
system primitives or a deep understanding for the implemen-
tation of parallel strategies. Thirdly, automatically parallel
strategy searching is time-consuming for giant models. Al-
though Tofu [46] and SOAP [23] accomplish model parti-
tioning and replication automatically through computational
graph analysis, the search-based graph optimization approach
has high computational complexity, which is further positively
associated with the number of model operators (e.g., hundreds
of thousands of operators for GPT3 [8]) and allocated GPUs
(e.g., hundreds or thousands), making such an approach im-
practical when applying to giant model training. Finally, due
to the heterogeneity in both GPU computing capability and
memory, parallel strategies should be used adaptively and
dynamically.

There are significant gaps in supporting giant model train-
ing using existing DL frameworks. Exposing low-level inter-
faces dramatically increases user burden and limits system
optimization opportunities. Users need to understand the im-
plementation details of distributed operators and handle the
overlapping of computation with communication, which is
hard for model developers. Using a low-level approach tightly
couples model code to a specific parallel strategy, which re-
quires code rewriting completely when switching between
parallel strategies (i.e., from pipeline parallelism to tensor
model parallelism). More constraints are introduced to model
algorithm innovations, because the efforts of implementing a
new module correctly in hybrid strategies are not trivial, let
alone consider the performance factors such as load balancing
and overlapping. From the system aspect, seeking a better
parallel strategy or a combination using existing ones also
requires rewriting user code, demanding a deep understanding
of the DL model.

To address the aforementioned challenges, Whale explores

a new approach that supports various parallel strategies while
minimizing user code modifications. By introducing new uni-
fied primitives, users can focus on implementing the model
algorithm itself, while switching among various parallel strate-
gies by simply changing the annotations. Whale runtime uti-
lizes the user annotations as hints to select parallel strategies
at best effort with automatic graph optimization under a lim-
ited search scope. Whale further considers heterogeneous
hardware capabilities using a balanced algorithm, making
resource heterogeneity transparent to users.

3 Design

In this section, we first introduce key abstractions and parallel
primitives which can express flexible parallelism strategies
with easy programming API (Section 3.1). Then, we describe
our parallel planner that transforms a local model with parallel
primitives into a distributed model, through partitioning Task-
Graphs, inserting bridge layers to connect hybrid strategies,
and placing TaskGraphs on distributed devices (Section 3.2).
In the end, we propose a hardware-aware load balance al-
gorithm to speed up the training with heterogeneous GPU
clusters (Section 3.3).

3.1 Abstraction
3.1.1 Internal Key Concepts

Deep learning frameworks such as TensorFlow [7] provide
low-level APIs for distributed computing, but is short of ab-
stractions to represent advanced parallel strategies such as
pipeline. The lack of proper abstractions makes it challeng-
ing in the understanding and implementation of complicated
strategies in a unified way. Additionally, placing model oper-
ations to physical devices properly is challenging for compli-
cated hybrid parallel strategies, especially in heterogeneous
GPU clusters. Whale introduces two internal key concepts,
i.e., TaskGraph and VirtualDevice. TaskGraph is used to mod-
ularize operations for applying a parallel strategy. VirtualDe-
vice hides the complexity of mapping operations to physical
devices. The two concepts are abstractions of internal system
design and are not exposed to users.

TaskGraph(TG) is a subset of the model for parallel trans-
formation and execution. One model can have one or more
non-overlapping TaskGraphs. We can apply parallel strate-
gies to each TaskGraph. By modularizing model operations
into TaskGraphs, Whale can apply different strategies to dif-
ferent model parts, as well as scheduling the execution of
TaskGraphs in a pipeline. A TaskGraph can be further repli-
cated or partitioned. For example, in data parallelism, the
whole model is a TaskGraph, which can be replicated to mul-
tiple devices. In pipeline parallelism, one pipeline stage is
a TaskGraph. In tensor model parallelism, we can shard the
TaskGraph into multiple submodules for parallelism.
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import whale as wh
wh.init(wh.Config({

"num_micro_batch": 8}))
with wh.replicate(1):

model_stage1()
with wh.replicate(1):

model_stage2()

Example 1: Pipeline with 2
TaskGraphs

import whale as wh
wh.init()
with wh.replicate(total_gpu):

features = ResNet50(inputs)
with wh.split(total_gpu):

logits = FC(features)
predictions = Softmax(logits)

Example 2: Hybrid of replicate
and split

VirtualDevice (VD) is the logical representation of com-
puting resources, with one VirtualDevice having one or more
physical devices. VirtualDevice hides the complexity of de-
vice topology, computing capacity as well as device placement
from users. One VirtualDevice is assigned to one TaskGraph.
Different VirtualDevices are allowed to have different or the
same physical devices. For example, VD0 contains physical
devices GPU0 and GPU1, VD1 contains physical devices
GPU2 and GPU3 (different from VD0), and VD2 contains
physical devices GPU0 and GPU1 (the same as VD0).

3.1.2 Parallel Primitives

The parallel primitive is a Python context manager, where
operations defined under it are modularized as one TaskGraph.
Each parallel primitive has to be configured with a parameter
device_count, which is used to generate a VirtualDevice by
mapping the device_count number of physical devices. Whale
allows users to suggest parallel strategies with two unified
primitives, i.e., replicate and split. The two primitives can
express all existing parallel strategies, as well as a hybrid of
them [20, 25, 26, 32, 43].

replicate(device_count) annotates a TaskGraph to be repli-
cated. device_count is the number of devices used to compute
the TaskGraph replicas. If device_count is not set, Whale al-
locates a TaskGraph replica per device. If a TaskGraph is
annotated with replicate(2), it is replicated to 2 devices, with
each TaskGraph replica consuming half of the mini-batch.
Thus the mini-batch size for one model replica is kept un-
changed.

split(device_count) annotates a TaskGraph to apply intra-
tensor sharding. The device_count denotes the number of
partitions to be sharded. Each sharded partition is placed on
one device. For example, split(2) shards the TaskGraph into
2 partitions and placed on 2 devices respectively.

The parallel primitives can be used in combination to ap-
ply different parallel strategies to different partitions of the
model. Additionally, Whale also provides JSON Config API
to enable system optimizations. The config auto_parallel is
used to enable automatic TaskGraph partitioning given a pro-
vided partition number num_task_graph, which further eases
the programming for users and is necessary for hardware-
aware optimization when resource allocation is dynamic (Sec-
tion 3.3). In Whale, pipeline parallelism is viewed as an ef-
ficient inter-TaskGraph execution strategy. Whale uses the
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Figure 5: Whale Overview

config num_micro_batch to enable efficient pipeline paral-
lelism among TaskGraphs when the value is greater than 1.
In this way, Whale decouples the generation of TaskGraph
from the choice of pipeline parallelism strategies [16, 20, 32].
The system can easily extend to incorporate more pipeline
strategies (e.g., swap the execution order of B0 and F1 for
M1 in Figure 1).

Besides the combination of parallel strategies or pipeline
parallelism, Whale further supports nested data parallelism
to the whole parallelized model. Nested data parallelism is
enabled automatically when the number of available devices
is times of total devices requested by TaskGraphs.

Example 1 shows an example of pipeline parallelism with
two TaskGraphs, with each TaskGraph being configured with
1 device. The pipeline parallelism is enabled by configuring
the pipeline.num_micro_batch to 8. The total device number
of the two TaskGraphs is summed to 2. If the available device
number is 8, which is 4 times of total device number, Whale
will apply a nested 4-degree data parallelism beyond the
pipeline. In contrast, when using two available devices, it is a
pure pipeline. Example 2 shows a hybrid strategy that repli-
cates ResNet50 feature part while splitting the classi f ication
model part for the example in Figure 3.

wh.init(wh.Config({"num_task_graph":2,
"num_micro_batch":4,"auto_parallel":True}))

model_def()

Example 3: Auto pipeline

Example 3 shows an automatic pipeline example with two
TaskGraphs. When auto_parallel is enabled, Whale will par-
tition the model into TaskGraphs automatically according
to the computing resource capacity and the model structure.
(Section 3.3)

3.2 Parallel Planner
The parallel planner is responsible for producing an efficient
parallel execution plan, which is the core of Whale runtime.
Figure 5 shows an overview of the parallel planner. The work-
flow can be described as follows: (a) The parallel planner
takes a local model with optional user annotations, computing
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resources, and optional configs as inputs. The model hyperpa-
rameters (e.g., batch size and learning rate), and computing
resources (e.g., #GPU and #worker) are decided by the users
manually, while the parallel primitive annotations and con-
figs (e.g., num_task_graph and num_micro_batch) could be
either be manual or decided by Whale automatically; (b) the
VirtualDevices are generated given computing resources and
optional annotations automatically (Section 3.2.1); and (c)
the model is partitioned into TaskGraphs, and the TaskGraph
is further partitioned internally if split is annotated. Since we
allow applying different strategies to different TaskGraphs,
there may exist an input/output mismatch among TaskGraphs.
In such case, the planner will insert the corresponding bridge
layer automatically between two TaskGraphs (Section 3.2.3).

3.2.1 Virtual Device Generation

VirtualDevices are generated given the number of devices
required by each TaskGraph. Given K requested physical
devices GPU0,GPU1, ...,GPUK and a model with N Task-
Graphs, with corresponding device number d1,d2, ...dN . For
the ith TaskGraph, Whale will generate a VirtualDevice with
di number of physical devices. The physical devices are taken
sequentially for each VirtualDevice. As mentioned in Sec-
tion 3.1.2, when the available device number K is divisible
by the total number of devices requested by all TaskGraphs
∑

N
i di, Whale will apply a nested DP of K

∑
N
i di

-degree to the
whole model. In such case, we also replicate the correspond-
ing VirtualDevice for TaskGraph replica. By default, devices
are not shared among TaskGraphs. Sharing can be enabled
to improve training performance in certain model sharding
cases by setting cluster configuration1. Whale prefers to place
one model replica (with one or more TaskGraphs) within a
node, and replicates the model replicas across nodes. Ad-
vanced behaviors such as placing TaskGraph replicas within
a node to utilize NVLINK for AllReduce communication can
be achieved by setting the aforementioned configuration. For
example, as shown in Figure 5, there are two TaskGraphs, and
each TaskGraph requests 2 GPUs. Two VirtualDevices VD1
and VD2 are generated for two TaskGraphs. VD1 contains
GPU0 and GPU1, and VD2 contains GPU2 and GPU3. As
the number of available GPUs is 8, which is divisible by the to-
tal GPU number of TaskGraphs 4, a replica of VirtualDevices
can be generated but with different physical devices.

3.2.2 TaskGraph Partitioning

Whale first partitions a model into TaskGraphs, either by us-
ing explicit annotations or automatic system partitioning. If a
user annotation is given, operations defined within certain par-
allel primitive annotation compose a TaskGraph. Otherwise,
the system generates TaskGraphs based on the given config

1https://easyparallellibrary.readthedocs.io/en/latest/
api/config.html#clusterconfiguration

ShardingUnit: MatMul

AllReduce

Input ShardingInfo {[0, 0], [0, 1]}

Input ShardingInfo {[0, 1], [1, 0]}

SP1

SP2

Figure 6: Sharding pattern example for MatMul. One
ShardingUnit can map to multiple sharding patterns.

parameter num_task_graph and hardware information. The
details of the hardware-aware model partitioning is described
in Section 3.3.

If a TaskGraph is annotated with split(k), Whale will au-
tomatically partition it by matching and replacing sharding
patterns with a distributed implementation. Before describ-
ing the sharding pattern, we introduce two terminologies for
tensor model parallelism: 1) ShardingUnit is a basic unit for
sharding, and can be an operation or a layer with multiple
operations; and 2) ShardingInfo is the tensor sharding infor-
mation, and is represented as a list [s0,s1, ...,sn] given a tensor
with n dimensions, where si represents whether to split the
ith dimension, 1 means true and 0 means false. For example,
given a tensor with shape [6,4], the ShardingInfo [0,1] indi-
cates splitting in the second tensor dimension, whereas [1,1]
indicates splitting in both dimensions. A sharding pattern(SP)
is a mapping from a ShardingUnit and input ShardingInfo
to its distributed implementations. For example, Figure 6
shows two sharding patterns SP1 and SP2 with different input
ShardingInfo for ShardingUnit MatMul.

To partition the TaskGraph, Whale first groups the oper-
ations in the split TaskGraph into multiple ShardingUnits
by hooking TensorFlow ops API2. The TaskGraph sharding
process starts by matching ShardingUnits to the predefined
sharding patterns in a topology order. A pattern is matched by
a ShardingUnit and input ShardingInfos. If multiple patterns
are matched, the pattern with a smaller communication cost is
selected. Whale replaces the matched pattern of the original
ShardingUnit with its distributed implementation.

3.2.3 Bridge Layer

When applying different parallel strategies to different Task-
Graphs, the input/output tensor number and shape may change
due to different parallelism degrees or different parallel strate-
gies, thereby resulting in a mismatch of input/output tensor
shapes among TaskGraphs. To address the mismatch, Whale
proposes a bridge layer to gather the distributed tensors and
feed them to the next TaskGraph.

2TensorFlow Ops: https://github.com/tensorflow/tensorflow/
tree/r1.15/tensorflow/python/ops
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Figure 7: Bridge patterns.

Whale designs two bridge patterns for replicate and split
respectively, as shown in Figure 7. For replicate, the Task-
Graph is replicated to N devices, with different input batches.
The bridge layer gathers the outputs from different batches
for concatenation in batch dimension batch_dim. For split,
the outputs of TaskGraph are partitioned in split dimension
split_dim. The bridge layer gathers TaskGraph outputs for
concatenation in split_dim. By using the bridge layer, each
TaskGraph can obtain a complete input tensor. If the gather
dimension of the bridge layer is the same as the successor
TaskGraph input partition dimension, Whale will optimize
by fusing the aforementioned two operations to reduce the
communication overhead. As an example, if the outputs of
the TaskGraph are gathered in the first dimension, and the
inputs of the successor TaskGraph are partitioned in the same
dimension, then Whale will remove the above gather and
partition operations.

3.3 Hardware-aware Load Balance
In this section, we describe how we utilize the hardware infor-
mation to balance the workloads among TaskGraphs, which
achieves high performance even in heterogeneous GPU clus-
ters. The Whale parallel planner obtains the hardware infor-
mation from the cluster scheduler when the training job is
launched, and is responsible for both intra-TaskGraph and
inter-TaskGraph load balancing.

3.3.1 Intra-TaskGraph Load Balance

When the allocated devices are homogeneous, by default
Whale distributes the workloads within a TaskGraph to multi-
ple devices evenly. However, when allocated with heteroge-
neous GPUs with different computing capacities (e.g., V100
and P100), the aforementioned identical distribution effec-
tuates suboptimal performance. Such performance can be
attributed to a synchronization barrier at the end of Task-
Graph execution, which leads to long idle GPU time for the
faster GPU, as shown in Figure 4(a). To improve the over-
all utilization of heterogeneous GPUs, we need to balance
the computing according to the device’s computing capacity.
The intra-TaskGraph load balance attempts to minimize the
idle time within a TaskGraph, which is achieved by balanc-
ing the workloads proportional to device computing capacity
while being subject to memory constraints. For a TaskGraph
annotated with replicate, Whale balances the workload by
adjusting the batch size for each TaskGraph replica. The local
batch size on heterogeneous devices might differ due to the
load balancing strategy (Whale keeps the global batch size

unchanged). If batch-sensitive operators such as BatchNorm
exist, the local batch differences might have statistical effects.
Yet, no users suffered convergence issues in our experiments
or in our production deployment, which is probably due to
the robustness of DL. Besides, techniques like SyncBatch-
Normaliazaion3 might help. For a TaskGraph annotated with
split, Whale balances the FLOP of a partitioned operation
through uneven sharding in splitting dimension among multi-
ple devices.

We profile the TaskGraph T G on single-precision floating-
point operations(FLOP) as T G f lop and peak memory con-
sumption as T Gmem. Given N GPUs, we collect the infor-
mation for device i including the single-precision FLOP per
second as DFi and memory capacity as DMi. Assuming the
partitioned load ratio on the device i is Li, we need to find
a solution that minimizes the overall GPU waste, which is
formulated in Formula 1. We try to minimize the ratio of the
computational load of the actual model for each device Li
and the ratio of the computing capacity of the device over the
total cluster computing capacity DFi/∑

N
i=0 DFi, the maximum

workload being bounded by the device memory capacity DMi.

min
N

∑
i

∥∥∥∥∥Li −
DFi

∑
N
i=0 DFi

∥∥∥∥∥
s.t.

N

∑
i=0

Li = 1; Li ∗T Gmem <= DMi,(i = 1,2, ...,N)

(1)

The load ratio Li in each device is initialized in propor-
tional to the device’s computing capacity, which ideally re-
sults in a most balanced partition. However, when the memory
constraint is not satisfied, we need to adjust the load alloca-
tion to avoid out-of-memory (OOM) errors, while still trying
to achieve good performance. Whale proposes a memory-
constraint balancing algorithm to balance the workloads
among devices. The main idea of the algorithm is to shift the
workload from the memory-overload device to a memory-free
device with the lowest computation load. The details of the
algorithm are illustrated in Algorithm 1. It takes a TaskGraph
T G and VirtualDevice with N physical devices as inputs. The
algorithm first initializes (line 3-10) the profiling results in-
cluding 1) load_ratios as the workload ratios of devices; 2)
mem_utils as the memory utilization of devices; 3) f lop_utils
as the FLOP utilization of devices; 4) oom_devices records
out of memory devices whose value in mem_utils is greater
than 1; and 5) f ree_devices records devices that have free
memory space. The algorithm then iteratively shifts the load
from a memory-overload device to a memory-available de-
vice (line 11-18). It first finds a peak_device with maxi-
mum memory utilization from oom_devices, then it finds a
valley_device with available memory space and the lowest

3https://www.tensorflow.org/api_docs/python/tf/keras/
layers/experimental/SyncBatchNormalization
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Algorithm 1: Memory-Constraint Load Balancing
Input: TaskGraph T G,VirtualDevice(N)

1 load_ratios = /0; mem_utils = /0 ; f lop_utils = /0

2 oom_devices = /0 ; f ree_devices = /0

3 foreach i ∈ 0...N do
4 load_ratios[i] = DFi

∑
N
i=0 DFi

5 mem_utils[i] = load_ratios[i]∗T Gmem
DMi

6 f lop_utils[i] = load_ratios[i]∗T G f lop
DFi

7 if mem_utils[i]> 1 then
8 oom_devices.append(i)

9 else
10 f ree_devices.append(i)

11 while oom_devices ̸= /0 & f ree_devices ̸= /0 do
12 peak_device = argmax(oom_devices,key = mem_utils)
13 valley_device = argmin( f ree_devices,key =

( f lop_utils,mem_utils))
14 if shi f t_load(peak_device,valley_device) == success

then
15 update_pro f ile(mem_utils, f lop_utils)
16 oom_devices.pop(peak_device)

17 else
18 f ree_devices.pop(valley_device)
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Figure 8: Pipeline TaskGraphs on heterogeneous GPUs

FLOP utilization. The shi f t_load function attempts to shift
the workload from a peak_device to a valley_device. For data
parallelism, the batch size in the peak_device is decreased
by b, and the batch size in the valley_device is increased by
b. b is the maximum number that the valley_device will not
go OOM after getting the load from the peak_device. The
profiling information for each device is updated after a suc-
cessful workload shift is found. The aforementioned process
iterates until the oom_devices are empty or the f ree_devices
are empty.

3.3.2 Inter-TaskGraph Load Balance

When multiple TaskGraphs are executed in a pipeline, we
need to balance the inter-TaskGraph workloads on hetero-
geneous GPUs. As we introduced in Section 2.1, pipeline
parallelism achieves efficient execution by interleaving for-
ward/backward execution among multiple micro-batches. For
a model with N TaskGraphs, the ith TaskGraph needs to cache
N − i forward activations [32]. Notably, ith TaskGraph has to

cache one more micro-batch forward activation than the pre-
vious TaskGraph. Since activation memory is proportional to
batch size and often takes a large proportion of the peak mem-
ory, e.g., the activation memory VGG16 model with batch size
256 takes up around 74% of the peak memory [18], resulting
in uneven memory consumption among different TaskGraphs.
The different memory requirements of TaskGraphs motivate
us to place earlier TaskGraphs on devices with higher mem-
ory capacity. This can be achieved by sorting and reordering
the devices in the corresponding VirtualDevice by memory
capacity, from higher to lower. Figure 8 shows the memory
breakdown of the pipeline example (Figure 1) with two Task-
Graphs over heterogeneous GPUs V100 (32GB) and P100
(16GB), we prefer putting TaskGraph0 to V100, which has
a higher memory config. The TaskGraph placement heuris-
tic is efficient for common Transformer-based models (i.e.,
BertLarge and T5 in Figure 18). There might be cases where
later stages contain large layers (i.e., large sparse embedding),
which can be addressed in Algorithm 1 on handling OOM er-
rors. After reordering the virtual device according to memory
requirement, we partition the model operations to TaskGraphs
in a topological sort and apply Algorithm 1 to balance the
computing FLOP among operations, subject to the memory
bound of the memory capacity of each device.

4 Implementation

Whale is implemented as a standalone library without modifi-
cation of the deep learning framework, which is compatible
with TensorFlow1.12 and TensorFlow1.15 [7]. The source
code of Whale includes 13179 lines of Python code and 1037
lines of C++ code. We have open-sourced4 the Whale frame-
work to help giant model training accessible to more users.

Whale enriches the local model with augmented informa-
tion such as phase information, parallelism annotation, etc.,
which is crucial to parallelism implementation. To assist
the analysis of the user model without modifying the user
code, Whale inspects and overwrites TensorFlow build-in
functions to capture augmented information. For example,
operations are marked as backward when t f .gradients or
compute_gradients functions are called.

The parallel strategy is implemented by rewriting the com-
putation graph. We implement a general graph editor module
for ease of graph rewriting, which includes functions such as
subgraph clone, node replacement, dependency control, and
so on. To implement data parallelism, Whale first clones all
operations and tensors defined in a local TaskGraph and re-
places the device for model replicas. Then it inserts NCCL [6]
AllReduce [40] operation to synchronize gradients for each
TaskGraph replica. To implement tensor model parallelism,
Whale shards the TaskGraph by matching a series of prede-
fined patterns, replacing them with corresponding distributed

4https://github.com/alibaba/EasyParallelLibrary
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Figure 9: Whale DP vs TF DP
on ResNet.
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Figure 10: Whale DP vs TF DP
on BertLarge.
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Figure 12: Hybrid pipeline par-
allelism on BertLarge.

implementation, and inserting communication operations as
needed. To implement pipeline parallelism, Whale builds a
pipeline strategy module that supports state-of-the-art strate-
gies [16, 20, 32]. By default, Whale adopts a backward-first
strategy which is similar to PipeDream [32]. The pipeline
strategy is implemented by first partitioning the minibatch
into micro-batches. The interleaving of forward-backward
micro-batch execution is achieved by inserting control de-
pendency operations among entrance and exit operations of
different TaskGraphs.

To assist hardware-aware optimizations, Whale implements
profiling tools that profile the model FLOPS and peak mem-
ory consumption. The parallel planner gets the hardware in-
formation from our internal GPU cluster, which is used to
generate an efficient parallel plan by balancing the computing
workloads over heterogeneous GPUs.

Besides, Whale is highly optimized in both computing ef-
ficiency and memory utilization by integrating with a series
of optimization technologies such as ZERO [36], recomputa-
tion [10], CPU offload [39], automatic mixed precision [31],
communication optimization [40], XLA [7], etc.

5 Experiment

In this section, we first demonstrate the efficiency of the par-
allelism strategy by evaluating micro-benchmarks. We then
evaluate the training with heterogeneous GPUs to show the
advantages of the hardware-aware load balance algorithm.
We end by showing the effectiveness and efficiency of Whale
by two industry-scale multimodal model training cases. All
the experiments are conducted on a shared cloud GPU cluster.
Every cluster node is equipped with a 96-core Intel Xeon Plat-
inum 8163 (Skylake) @2.50GHz with 736GB RAM, running
CentOS 7.7. Each node consists of 2/4/8 GPUs, with NVIDIA
32-GB V100 GPUs [3] or NVIDIA 16-GB P100 GPUs [2],
powered by NVIDIA driver 418.87, CUDA 10.0, and cuDNN
7. Nodes are connected by 50Gb/s ethernet. All the models
are implemented based on TensorFlow 1.12.

5.1 Micro-benchmark
In this section, we evaluate Whale with a series of micro-
benchmarks. We first demonstrate that Whale is efficient in
single parallel strategy by comparing with TensorFlow Esti-
mator [14] DP and GPipe [20] pipeline. We then show the
advantages of Whale hybrid strategies over single parallel
strategy. Next, we measure the overhead of the bridge layer
for hybrid strategies. Finally, we evaluate the effect of shard-
ing patterns in automatic TaskGraph partitioning.

5.1.1 Performance of Single Parallel Strategy

We evaluate Whale DP by comparing it with TensorFlow
Estimator DP, using the BertLarge [13] and ResNet50 [19] on
different number of V100 GPUs. Figure 9 and Figure 10 show
the training throughput speedup on ResNet50 and BertLarge
respectively. The throughput speedup is calculated by dividing
the training throughput on N devices by the throughput on
one device. Whale DP consistently obtained better speedup
and higher GPU utilization than TensorFlow Estimator DP.
Such findings could be attributed to Whale’s communication
optimization technologies such as hierarchical and grouped
AllReduce, which is similar to Horovod [40].

We then evaluate the efficiency of Whale pipeline paral-
lelism by comparing with GPipe [20]. The pipeline scheduling
strategy in Whale is similar to PipeDream [32]. The exper-
iments are conducted using the BertLarge model with 4/8
pipeline stages on the different numbers of V100 GPUs. As
shown in Figure 11, the training throughput speedup of Whale
outperforms GPipe in both 4 stages and 8 stages by 1.45X
and 1.14X respectively. We attribute the performance gain to
the use of the alternating forward-backward scheduling pol-
icy [32], which improves GPU utilization. We also find that
the pipeline performance is sensitive to the num_task_graph,
thus exposing it as a configurable parameter can help achieve
a better performance when models and computing resources
change.

5.1.2 Performance of Hybrid Strategy

We evaluate hybrid strategies by comparing them with the
single parallel strategy. We also compare the performances of
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Figure 14: Hybrid strategy on
ResNet50 w/ 1M classes.
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Layer.

hybrid strategies on different numbers of devices. We select
two typical types of hybrid strategies: 1) Nested pipeline with
DP; and 2) Combination of DP and tensor model parallelism.

We first apply a nested pipeline with DP to the BertLarge
model on V100 GPUs. The model is partitioned into 2/4/8
number of TaskGraphs, and we measure the training perfor-
mance of each model on 8/16/32 GPUs. Figure 12 shows that
pipelines with 2 TaskGraphs and 4 TaskGraphs get similar
training speedups and GPU utilization. However, we observe a
performance drop on 8 TaskGraphs and lower GPU utilization
compared to 2/4 TaskGraphs. This is because 8 TaskGraphs
lead to relatively fewer model operations in each TaskGraph,
and the GPU computation is not enough to overlap the inter-
TaskGraph communication, resulting in poor performance.

Next, we evaluate the combination hybrid strategy on a
large-scale image classification model, as we have discussed
in Section 2.1 and illustrated in Figure 3. We perform experi-
ments on classification numbers 100K and 1M on different
numbers of V100 GPUs. To reduce the communication over-
head of hybrid parallelism, we collocate the ResNet50 repli-
cas with FC partitions. We compare the hybrid results of 100K
classes with DP, as shown in Figure 13, hybrid parallelism
outperforms data parallelism by 1.13X, 1.66X, and 2.43X
training throughput speedup with 8, 16, and 32 GPUs respec-
tively, with the line plot corresponding to GPU utilization.
When the number of workers increases, hybrid parallelism
maintains a near-linear speedup, while the DP strategy fails
drastically beyond 16 workers. This is because the heavy FC
layer (the parameter size of ResNet50 backbone is 90 MB,
while the parameter size of FC layer is 782MB) incurs a huge
gradient synchronization overhead. For the task of 1M classes,
DP fails due to OOM. With hybrid parallelism, Whale allows
for the training of image classification task with one million
classes. Figure 14 shows the performance of hybrid paral-
lelism over 8/16/32 GPUs. The training throughputs from
8 GPUs to 32 GPUs achieve 95% scaling efficiency, which
highlights the need for using a hybrid strategy.

5.1.3 Overhead of Bridge Layer

To demonstrate the efficiency of the hybrid strategy, We mea-
sure the overhead of the bridge layer by profiling the bridge
layer time with 100K classes on 8/16/32 GPUs. We then com-
pare the overhead of gradient AllReduce time in DP with the
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bridge overhead to understand the performance gain from
hybrids. As shown in Figure 16, the overhead of the bridge
layer takes around 6% in overall training time in 8 GPUs and
10% in 32 GPUs. The overhead of the hybrid is reduced by 6X
on 32 GPUs compared to gradient synchronization overhead
of pure DP.

5.1.4 Effect of Sharding Pattern

As Whale automatically chooses a sharding pattern with min-
imum communication cost (Section 3.2.2), to demonstrate
the effect of exploring the sharding patterns, we force the
framework to use a specific pattern in this experiment. We
evaluate two types of sharding patterns as illustrated in Fig-
ure 6 on large scale image task with 100K classes. SP1 shards
the second input tensor in the second tensor dimension, and
SP2 shards the two input tensors and aggregates the results
with AllReduce. The comparison results of the two sharding
patterns are shown in Figure 15, where SP1 outperforms SP2
by 1.6X to 3.75X as the number of requested GPUs increases
from 8 to 32, as SP1 has a lower communication cost than SP2.
The exploration of sharding patterns allows for the possibility
of system optimization in distributed model implementation.

5.2 Performance of Load Balance
We show the benefits of the hardware-aware load balancing
algorithm by evaluating data parallelism and pipeline paral-
lelism.

For data parallelism, we evaluate three typical models, in-
cluding ResNet50, BertLarge, and GNMT [48]. The experi-
ments are conducted on heterogeneous GPUs that consist of
8 32GB V100 GPUs and 8 16GB P100 GPUs. We set the
same batch size for all model replicas as the baseline. We
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import whale as wh
wh.init(wh.Config({

"num_micro_batch": 35,
"num_task_graph": 8}))

# Define M6 model.
m6_model_def()

Example 4: M6-10B model
with pipeline
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Figure 19: M6-10B
with Pipeline and DP.

then apply the hardware-aware algorithm to each model and
get the speedup compared with the baseline performance, as
shown in Figure 17. Whale outperforms the baseline in all
three models by a factor from 1.3X to 1.4X. We also measure
GPU utilization and report the average metric for each GPU
type. The hardware-aware policy significantly improves the
GPU utilization of V100 by 1.39X to 1.96X for the three
models, which improves the overall training performance.

For pipeline parallelism, we evaluate two models, including
BertLarge and T5-Large [52]. The training is performed on
heterogeneous GPUs that consist of 4 32GB V100 GPUs and
4 16GB P100 GPUs. Both BertLarge and T5-Large are parti-
tioned into 4 stages. We further apply a nested DP to pipeline.
We set the evenly partitioned model as the baseline. We con-
ducted training with the hardware-aware policy and got about
20% speedup on both models, as shown in Figure 18. The
GPU utilization of hardware-aware load balancing strategy
improved the GPU utilization of V100 by around 40%, which
shows the efficiency of the hardware-aware load balancing
algorithm.

5.3 Industry-Scale Giant Model Training
5.3.1 Training M6-10B Model

The M6-10B [28] model is a Chinese multimodal model with
10 billion parameters. The model consists of 24 encoder layers
and 24 decoder layers. We use Adafactor [42] as the training
optimizer. We parallelize the training of M6-10B model with
a hybrid parallel strategy, by nesting pipeline parallelism and
data parallelism. Whale can easily scale a local M6 model
to a distributed one by only adding a few lines on top of the
model definition as shown in Example 4. We set the number
of pipeline stages to 8 and the number of micro-batches to
35. We enable recomputation [10] to save activation mem-
ory during training. The training performance is evaluated
on 32-GB V100 GPUs. Each node contains 8 GPUs. When
scaling the computing nodes from 8 to 32, Whale achieved
91% scalability, as shown in Figure 19.

5.3.2 Training M6-MoE Model to Trillions

We scale the model parameters to 10 trillion (10T) by switch-
ing to hybrids of DP and tensor model parallelism with only
a small number of lines of code change. The computation
cost of training dense models is proportional to the model
parameters. If we scale the dense 10B model to the dense

10T model linearly without considering overhead, we need at
least 256,000 NVIDIA V100 GPUs. Instead of scaling the M6
model with dense structure, we adopt M6-MoE [53] model
with sparse expert solution [17, 26]. The sample code of the
MoE structure is implemented with Whale by adding four
lines, as shown in Example 5. Line 3 sets the default parallel
primitive as replicate, i.e., data parallelism is applied for the
operations if not explicitly annotated. Line 5 partitions the
computation defined under split scope across devices.

1 import whale as wh
2 wh.init()
3 wh.set_default_strategy(wh.replicate(total_gpus))
4 combined_weights ,dispatch_inputs=gating_dispatch()
5 with wh.split(total_gpus):
6 outputs = MoE(combined_weights , dispatch_inputs)

Example 5: Distributed MoE model

We evaluate M6-MoE model with 100 billion, 1 trillion and
10 trillion parameters respectively, the detailed configurations
can be found in [29, 53]. We enable built-in technologies of
Whale to optimize the training process, such as recomputa-
tion [10], AMP (auto mixed precision) [1], XLA [5], CPU
offloading [39], etc. We can train the M6-MoE-100B model
with 100 million samples on 128 V100 in 1.5 days. We ad-
vance the model scale to 1 trillion parameters on solely 480
NVIDIA V100 GPUs, in comparison with the recent SOTA
on 2048 TPU cores [17]. We further scale the model to 10
trillion parameters by adopting optimized tensor offloading
strategies [29] with 512 NVIDIA V100 GPUs. Whale can
scale models from 100 billion to 10 trillion without code
changes, which makes giant model training accessible to most
users.

6 Related Work

Giant model training. TensorFlow [7] and PyTorch [34]
provide well-supported data parallelism and vanilla model par-
allelism by explicitly assigning operations to specific devices.
However, they are not efficient enough for giant model train-
ing. Megatron [43], GPipe [20], and Dapple [16] have pro-
posed new parallel training strategies to scale the training of
large-scale models. DeepSpeed [38] lacks general support for
tensor model parallelism, besides, model layers are required
to rewrite in sequential for pipeline parallelism. GShard [26]
supports operator splitting by introducing model weight an-
notations and tensor dimension specifications. The high per-
formance of those works is achieved by exposing low-level
system abstractions to users (e.g., device placement, equiva-
lent distributed implementation for operators), or enforcing
model or tensor partition manually, which results in signifi-
cant user efforts. As a parallel work to Whale, GSPMD [51]
extends GShard by annotating tensor dimensions mapping for
both automatic and manual operator partitioning. As a gen-
eral giant model training framework, Whale adopts a unified
abstraction to express different parallel strategies and their hy-
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brid nests and combinations, utilizing high-level annotations
and pattern matching for operator splitting. Whale further
scales to M6-10T through automatically distributed graph
optimizations with the awareness of heterogeneous resources.

Zero [36, 37, 39] optimizes memory usage by removing
redundant GPU memory, offloading computation to the CPU
host, and utilizing non-volatile memory respectively. Recom-
putation [10] trades computation for memory by recomput-
ing tensors from checkpoints. Such memory optimization
approaches are orthogonal to Whale, which can be further
combined for giant model training efficiently.

Graph optimization. Deep learning is powered by dataflow
graphs with optimizations to rewrite the graph for better per-
formance, such as TensorFlow XLA [7], TVM [9], Ansor [55],
AStitish [56], etc. TASO [22] and PET [45] adopt a graph
substitution approach to optimize the computation graph au-
tomatically. Those works mainly focus on the performance
of a single GPU, while Whale utilizes the graph optimization
approach for achieving efficient performance in distributed
training. Tofu [46] and SOAP [23] also use graph partition to
produce distributed execution plans, but with a high search
cost. Whale utilizes the introduced annotations to shrink the
search space, thus making graph optimization practical for gi-
ant model training at a trillion scale. Besides, Whale extends
the graph optimization approach to complicated parallel strate-
gies in a unified abstraction, capable of pipeline parallelism,
tensor model parallelism, and hybrid parallelism.

Resource heterogeneity. Philly [21] reports the trace study
in multi-tenant GPU clusters of Microsoft and shows the ef-
fect of gang scheduling on job queuing. MLaaS [47] studies a
two-month trace of a heterogeneous GPU cluster in Alibaba
PAI. Gandiva [49] shows jobs are different in sensitivity to
allocated resources. Whale is capable of adapting to resource
heterogeneity, which can reduce the queuing delay of giant
model training with hundreds of GPUs. The design of Whale
advocates the approach of decoupling model programming
and distributed execution. It dynamically generates an effi-
cient execution plan by considering the properties of both
model and heterogeneous resources.

7 Conclusion

Whale demonstrates the possibility of achieving efficiency,
programmability, and adaptability in a scalable deep learning
framework for training trillion-parameter models. Whale sup-
ports various parallel strategies using a unified abstraction,
hides distributed execution details through new primitive an-
notations, and adapts to heterogeneous GPUs with automatic
graph optimizations. Going forward, we hope that Whale can
become a large-scale deep learning training foundation to
further engage model algorithm innovations and system opti-
mizations in parallel, making giant model training technology
to be adopted easily and efficiently at scale.
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